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Preface

“Everything happens to everybody sooner or later if there is time enough” - George
Bernard Shaw

“. . . but in this world nothing can be said to be certain, except death and taxes.” -
Benjamin Franklin

A logical consequence of Bernard Shaw’s quote is that if there is time enough, then everybody
will have experienced a given event at some point. This is one of the central assumptions
to survival analysis (specifically to single-event analysis, but we’ll get to that later). As
nothing can be certain (except death and taxes), machine learning can be used to predict
the probability people will experience the event and when. This is exactly the problem that
this book tackles.

With immortality only being a theoretical concept, there is never ‘time enough’, hence
survival analysis assumes that the event of interest is guaranteed to occur within an object’s
lifetime. This event could be a patient entering remission after a cancer diagnosis, the lifetime
of a lightbulb after manufacturing, the time taken to finish a race, or any other event that is
observed over time. Survival analysis differs from other fields of Statistics in that uncertainty
is explicit encoded in the survival problem; this uncertainty is known as ‘censoring’. For
example, say a model is being built to predict when a marathon runner will finish a race
and to learn this information the model is fed data from every marathon over the past five
years. Across this period, there will be many runners who never finish their race. Instead,
these runners are said to be ‘censored’ and the model uses all information up until the
point of censoring (dropping out the race), and learns that they ran for at least as long as
their censoring time (the time they dropped out). Censoring is unique to survival analysis
and without the presence of censoring, survival analysis is mathematically equivalent to
regression.

This book covers survival analysis in the most common right-censoring setting for independent
censoring, as well as discussing competing risk frameworks for dependent censoring - these
terms will all be covered in the introduction of the book.

A note from Raphael: I wrote my PhD thesis about machine learning applications to
survival analysis as I was interested in understanding why more researchers were not using
machine learning models for survival analysis. Since then I’ve had the pleasure to work
with, and advise, researchers across different sectors, including pharmaceutical companies,
governmental agencies, funding organisations, and research institutions. I hope that this book
continues to help researchers discover machine learning survival analysis and to navigate the
nuances and complexities it presents.

A note from Andreas: FIXME.
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xiv Preface

Overview
This textbook is intended to fill a gap in the literature by providing a comprehensive
introduction to machine learning in the survival setting. If you are interested in machine
learning or survival analysis separately then you might consider James et al. (2013), Hastie,
Tibshirani, and Friedman (2001), Bishop (2006) for machine learning and Collett (2014), J.
D. Kalbfleisch and Prentice (1973) for survival analysis. This book serves as a complement
to the above examples and introduces common machine learning terminology from simpler
settings such as regression and classification, but without diving into the detail found in
other sources, instead focusing on extension to the survival analysis setting.

This book may be useful for Masters or PhD students who are specialising in machine
learning in survival analysis, machine learning practitioners looking to work in the survival
setting, or statisticians who are familiar with survival analysis but less so with machine
learning. The book could be read cover-to-cover, but this is not advised. Instead it may be
preferable to dip into sections of the book as required and use the ‘signposts’ that direct the
reader to sections of the book that are relevant to each other.

The book is split into five parts:

Part I: Survival Analysis and Machine Learning The book begins by introducing
the basics of survival analysis and machine learning and unifying terminology between the
two to enable meaningful description of ‘machine learning in survival analysis’ (MLSA). In
particular, the survival analysis ‘task’ and survival ‘prediction types’ are defined.

Part II: Evaluation The second part of the book discusses measures for evaluating survival
models. These are presented in different classes that reflect the prediction types identified in
Part I. In each chapter, the measure class is introduced, particular metrics are listed, and
commentary is provided on how and when to use the measures. The final chapter of Part II
briefly discusses when to use a given measure class and provides recommendations for model
comparison.

Part III: Models Part III is a deep dive into machine learning models for solving survival
analysis problems. This begins with ‘classical’ models that may not be considered ‘machine
learning’ and then continues by exploring different classes of machine learning models
including random forests, support vector machines, gradient boosting machines, neural
networks, and other less common classes. Each model class is introduced in the simpler
regression setting and then extensions to survival analysis are discussed. Differences between
model implementations are not discussed, instead the focus is on understanding how these
models are built for survival analysis - in this way readers are well-equipped to independently
follow individual papers introducing specific implementations.

Part IV: Reduction Techniques The next part of the book introduces reduction techniques
in survival analysis, which is the process of solving the survival analysis task by using methods
from other fields. In particular, chapters focus on demonstrating how any survival model
can be used in the competing risks setting, discrete time modelling, Poisson methods,
pseudovalues (reduction to regression), and other advanced modelling methods.

Part V: Extensions and Outlook The final part of the book provides some miscellaneous
chapters that may be of use to readers. The first chapter lists common practical problems
that occur when running survival analysis experiments and solutions that we have found
useful. The next lists open-source software at the time of writing for running machine
learning survival analysis experiments. The final chapter is our outlook on survival analysis
and where the field may be heading.



Preface xv

Exercises are provided at the end of the book so you can test yourself as you go along.

Citing this book
Whilst this book remains a work in progress you can cite it as

Sonabend. R, Bender. A. (2025). Machine Learning in Survival Analysis.
https://www.mlsabook.com.

@book{MLSA2025
title = {Machine Learning in Survival Analysis},
editor = {Raphael Sonabend, Andreas Bender},
url = {https://www.mlsabook.com},
year = {2025}

}

Please see the front page of the book website (https://www.mlsabook.com) for full licensing
details.

We hope you enjoy reading this book.

Raphael and Andreas

https://www.mlsabook.com
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Symbols and Notation

. Minor changes expected!

This page is a work in progress and minor changes will be made over time.

The most common symbols and notation used throughout this book are presented below; in
rare cases where different meanings are intended within the book, this will be made clear.

Fonts, matrices, vectors
A lower-case letter in normal font, x, refers to a single, fixed observation. When in bold font,
a lower-case letter, x, refers to a vector of fixed observations, and an upper-case letter, X,
represents a matrix. Calligraphic letters, X , are used to denote sets.

A matrix will always be defined with its dimensions using the notation, X ∈ Xn×p, or if
for example X is the set of Reals, it may be written as “X is a n× p Real-valued matrix”,
analogously for integer-valued matrices etc. By default, a ‘vector’ will refer to a column
vector, which may be thought of as a matrix with n rows and one column, and may be
represented as:

x =


x1
x2
...

xn


Vectors are usually defined using transpose notation, for example the vector above may
instead be written as x⊤ = (x1 x2 · · ·xn) or x = (x1 x2 · · ·xn)⊤. Vectors may also be defined
in a shortened format as x ∈ Xn×1 or more simply x ∈ Xn, which implies a column vector
of length n with elements as represented above.

A letter in normal font with one subscript refers to a single element from a vector. For
example, given x ∈ Xn, the ith element is denoted xi. Given a matrix X ∈ Xn×p, a bold-face
lower-case letter with a single subscript refers to the row of a matrix, for example the ith
row would be xi = (xi;1 xi;2 · · ·xi;p)⊤. Whereas a column is referenced with a semi-colon
before the subscript, for example the jth column would be x;j = (x1;j x2;j · · ·xn;j)⊤. Two
subscripts can be used to reference a single element of a matrix, for example xi;j ∈ X would
be the element in the ith row and jth column of X.

1



2 Symbols and Notation

Functions
Typically, a ‘hat’, x̂, will refer to the prediction or estimation of a variable, x, with bold-face
used again to represent vectors. A ‘bar’, x̄, refers to the sample mean of x. Capital letters in
normal font, X, refer to scalar or vector random variables, which will be made clear from
context. E(X) is the expectation of the random variable X. We write A ⊥⊥ B, to denote
that A and B are independent, i.e., that P (A ∩B) = P (A)P (B).

A function f , will either be written as a formal map of domain to codomain, f : X →
Y; (x, y) 7→ f(x, y) (which is most useful for understanding inputs and outputs), or more
simply and commonly as f(x, y). Given a random variable, X, following distribution ζ
(mathematically written X ∼ ζ), then fX denotes the probability density function, and
analogously for other distribution defining functions such as the cumulative distribution
function, survival function, etc. In the survival analysis context (Chapter 4), a subscript “0”
refers to a “baseline” function, for example, S0 is the baseline survival function.

Finally, exp, refers to the exponential function, f(x) = ex, and log refers to the natural
logarithm ln(x) = loge(x).

Variables and acronyms
Common variables and acronyms used in the book are given in Table 0.1 and Table 0.2
respectively.

Table 0.1: Common variables used throughout the book.

Variable Definition
R,R>0,R≥0, R̄ Set of Reals, positive Reals (excl. zero), non-negative Reals (incl. zero),

and Reals including ±∞.
N>0 Set of Naturals excluding zero.
(X, t, δ) Survival data where X ∈ Rn×p is a real-valued matrix of n observations

(rows) and p features (columns), t ∈ Rn is a vector of observed outcome
times, and δ ∈ Rn is a vector of observed outcome indicators.

β Vector of model coefficients/weights, β ∈ Rp.
η Vector of linear predictors, η = (η1 η2 · · · ηn)⊤, where η = Xβ and

ηi = x⊤
i β.

D,Dtrain,Dtest Dataset, training data, and testing data.

Table 0.2: Common acronyms used throughout the book.

Acronym Definition
AFT Accelerated Failure Time
cdf Cumulative Distribution Function
chf Cumulative Hazard Function
CPH Cox Proportional Hazards
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Acronym Definition
GBM Gradient Boosting Machine
GLM Generalised Linear Model
IPC(W) Inverse Probability of Censoring (Weighted)
ML Machine Learning
pdf Probability Density Function
PH Proportional Hazards
(S)SVM (Survival) Support Vector Machine
t.v.i. Taking Values In
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• Mention somewhere that SA can be used to solve T-year prediciton problems (i.e., see if
we can get classif users over to SA).

• Also SA can be used for censoring/truncation

Writing after a global pandemic, applications of survival analysis are more relevant than
ever. Predicting the time from onset of COVID-19 symptoms to hospitalisation, or the time
from hospitalisation to intubation, or intubation to death, are all time-to-event predictions
that are at the centre of survival analysis. As well as morbid applications, survival analysis
predictions may be concerned with predicting the time until a customer cancels their gym
membership, or the lifetime of a lightbulb; any event that is guaranteed (or at least very
likely) to occur can be modelled by a survival analysis prediction. As these predictions can
be so sensitive, for example a model predicting when a child should be taken off breathing
support (Data Study Group Team 2020), the best possible predictions, evaluated to the
highest standard, are a necessity. In other fields of predictive modelling, machine learning
has made incredible breakthroughs (such as AlphaFold), therefore applying machine learning
to survival analysis is a natural step in the evolution of an important field.

Survival analysis is the field of Statistics focusing on modelling the distribution of an event,
which may mean the time until the event takes place, the risk of the event happening, the
probability of the event occurring at a single time, or the event’s underlying probability
distribution. Survival analysis (‘survival’) is a unique field of study in Statistics as it includes
the added difficulty of ‘censoring’. Censoring is best described through example: a study
is conducted to determine the mortality rate of a group of patients after diagnoses with a
particular disease. If a patient dies during this study then their outcome is ‘death’ and their
time of death can be recorded. However if a patient drops-out of the study before they die,
then their time of death (though guaranteed to occur) is unknown and the only available
information is the time at which they left the study. This patient is now said to be censored
at the time they drop out. The censoring mechanism allows as much outcome information
(time and event) to be captured as possible for all patients (observations).

Machine learning (ML) is the field of Statistics primarily concerned with building models to
either predict outputs from inputs or to learn relationships from data (Hastie, Tibshirani,
and Friedman 2001; James et al. 2013). This book is limited to the former case, or more

5



6 Introduction

specifically supervised learning, as this is the field in which the vast majority of survival
problems live. Relative to other areas of supervised learning, development in survival analysis
has been slow – the majority of developments in machine learning for survival analysis have
only been in the past decade (see chapters (?@sec-review)-(Chapter 7)). This appears
to have resulted in less interest in the development of machine learning survival models
(?@sec-review), less rigour in the evaluation of such models (Chapter 7), and fewer off-
shelf/open-source implementations (R. Sonabend et al. 2021). This book seeks to set the
foundations for clear workflows, good practice, and precise results for ‘machine learning
survival analysis’.

1.1 Why is this book needed?
Firstly, whilst there are many books dedicated to regression and classification as machine
learning problems (the ‘bibles’ of machine learning focus entirely on regression and classifi-
cation only (Bishop 2006; Hastie, Tibshirani, and Friedman 2001; James et al. 2013)), there
is a deficit of books covering the survival analysis setting. By writing this book we hope to
fill this gap and enable more practitioners to use cutting-edge methods in survival analysis.
Survival analysis has important applications in healthcare, finance, engineering and more, all
fields that directly impact upon individual lives on a day-to-day basis, and should perhaps
be considered as important as classification and regression. The result of this gap in interest,
is the erroneous assumption that one field can be directly applied to another. For example
there is evidence of researchers treating censoring as a nuisance to be ignored and using
regression models instead (Schwarzer, Vach, and Schumacher 2000). Censoring is indeed a
challenge and may contribute to making survival analysis less accessible than other fields,
but this need not be the case; a clear unification of terminology and presentation of methods
may help make ‘machine learning survival analysis’ more accessible. Added accessibility
could lead to more academics (and non-academics) engaging with the field and promoting
good standards of practice, as well as developing more novel models and measures.

Where survival models have been developed, these have skewed towards ‘ranking models’,
which predict the relative risk of an event occurring (?@sec-surv-set-types). In many
applications these predictions are sufficient, for example in randomised control trials if
assessing the increased/decreased risk of an event after treatment. However, there are many
use-cases where predicting an individual’s survival probability distribution is required. Take,
for example, an engineer calculating the lifetime of a plane’s engine.1 There are three
important reasons to replace a jet engine at the optimal time:

• financial: jet engines are very expensive and replacing one sooner than required is a
waste of money;

• environmental: an engine being replaced too early is a waste of potential usage;
• safety: if the engine is replaced too late then there is a risk to passengers.

Now consider examples for the three possible ‘prediction types’ the engineer can make:

i. A ‘relative risk prediction’: This engine is twice as likely to fail as another.
ii. A ‘survival time prediction’: The engine is expected to fail in 30 days.
iii. A ‘survival distribution prediction’: The lifetime of the engine is distributed

according to the probability distribution ζ.
1In this engineering context, survival analysis is usually referred to as reliability analysis.
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The first prediction type is not useful as the underlying relative risk may be unknown and
the engineer is concerned with the individual lifetime. The second prediction type provides
a useful quantity for the engineer to work with however there is no uncertainty captured in
this prediction. The third prediction type can capture the uncertainty of failure over the
entirety of the positive Reals (though usually only a small subset is possible and useful).
With this final prediction type, the engineer can create safe decisions: ‘replace the engine
at time τ , where τ is the time when the predicted probability of survival drops below 60%,
S(τ) = 0.6’. There are ethical, economic, and environmental reasons for a good survival
distribution prediction and this book considers a distribution prediction to be the most
important prediction type.

Evaluating predictions from survival models is of the utmost importance. This is especially
important as survival models are often deployed in the public domain, particularly in
healthcare. Physical products in healthcare, such as new vaccines, undergo rigorous testing
and research in randomised control trials before being publically deployed; the same level of
rigour should be expected for the evaluation of survival models that are used in life-and-death
situations. Evaluation measures for regression and classification are well-understood with
important properties, however survival measures have not undergone the same treatment.
For example many survival models are still being evaluated solely with concordance indices
that have been repeatedly criticised (Gönen and Heller 2005; Rahman et al. 2017; Schmid
and Potapov 2012).

1.2 Reproducibility
This book includes simulations and figures generated in R, the code for any figures or
experiments in this book are freely available at https://github.com/mlsa-book/MLSA under
an MIT licence and all content on this website is available under CC BY 4.0.

Further reading

• (P. Wang, Li, and Reddy 2019) provides a light-touch but comprehensive survey of
machine learning models for survival analysis.

https://github.com/mlsa-book/MLSA
https://creativecommons.org/licenses/by/4.0/
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This chapter covers core concepts in machine learning. This is not intended as a comprehensive
introduction and does not cover mathematical theory nor how to run machine learning models
using software. Instead, the focus is on introducing important concepts and to provide basic
intuition for a general machine learning workflow. This includes the concept of a machine
learning task, data splitting (resampling), model training and prediction, evaluation, and
model comparison. Recommendations for more comprehensive introductions are given at
the end of this chapter, including books that cover practical implementation in different
programming languages.

3.1 Basic workflow
This book focuses on supervised learning, in which predictions are made for outcomes
based on data with observed dependent and independent variables. For example, predicting
someone’s height is a supervised learning problem as data can be collected for features
(independent variables) such as age and sex, and an observable outcome (dependent variable),
which is height. Alternatives to supervised learning include unsupervised learning, semi-
supervised learning, and reinforcement learning. This book is primarily concerned with
predictive survival analysis, i.e., making future predictions based on (partially) observed
survival outcomes, which falls naturally within the supervised learning domain.

The basic machine learning workflow is represented in Figure 3.1. Data is split into training
and test datasets. A learner is selected and is trained on the training data, inducing a fitted
model. The features from the test data are passed to the model which makes predictions
for the unseen outcomes (Box 1). The outcomes from the test data are passed to a chosen
measure with the predictions, which evaluates the performance of the model (Box 2). The
process of repeating this procedure to test different training and test data is called resampling
and running multiple resampling experiments with different models is called benchmarking.
All these concepts will be explained in this chapter.

13



14 Machine Learning

Figure 3.1: Basic machine learning workflow with data splitting, model training, predicting,
and evaluating. Image from Foss and Kotthoff (2024) (CC BY-NC-SA 4.0).

3.2 Tasks
A machine learning task is the specification of the mathematical problem that is to be solved
by a given algorithm. For example, “predict the height of a male, 13 year old child”, is a
machine learning task. Tasks are derived from datasets and one dataset can give rise to
many tasks across any machine learning domain. The dataset described by columns: ‘age’,
‘weight’, ‘height’, ‘sex’, ‘diagnosis’, ‘time of death’, ‘clinician notes’, could give rise to any of
the following tasks (and more):

• Predict age from weight, height, and sex - supervised regression task
• Predict sex from age and diagnosis - supervised classification task
• Predict time of death from all other features - supervised survival task
• Categorise observations into clusters - unsupervised clustering
• Learn to speak like a clinician depending on client diagnosis - natural language processing,

likely with reinforcement learning

As this book is focused on supervised learning, only the first three of these is covered in this
chapter and beyond. The specification of a task is vital for interpreting predictions from a
model and its subsequent performance. This is particularly true when separating between
determinisitc and probabilistic predictions, as discussed later in the chapter.

Formally, let x ∈ X ⊆ Rn×p be a matrix with p features for n observations and let y ∈ Y be
a vector of labels (or outcomes or targets) for all observations. A dataset is then given by
D = ((x1, y1), ..., (xn, yn)) where it is assumed D i.i.d.∼ (Pxy)n for some unknown distribution
P.

A machine learning task is the problem of learning the unknown function f : X → Y where
Y specifies the nature of the task, for example classification, regression, or survival.

3.2.1 Regression
Regression tasks make continuous predictions, for example someone’s height. Regression may
be deterministic, in which case a single continuous value is predicted, or probabilistic, where
a probability distribution over the Reals is predicted. For example, predicting an individual’s
height as 165cm would be a deterministic regression prediction, whereas predicting their
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height follows a N (165, 2) distribution would be probabilistic.

Formally, a deterministic regression task is specified by fRd : X → Y ⊆ Rn, and a probabilistic
regression task by fRp : X → S where S ⊂ Distr(Y) and Distr(Y) is the space of distributions
over Y.

In machine learning, deterministic regression is much more common than probabilistic and
hence the shorthand ‘regression’ is used to refer to deterministic regression (in contrast to
statistical modeling, where regression usually implies probabilistic regression).

3.2.2 Classification
Classification tasks make discrete predictions, for example whether it will rain, snow, or
be sunny tomorrow. Similarly to regression, predictions may be deterministic or probabilis-
tic. Deterministic classification predicts which category an observation falls into, whereas
probabilistic classification predicts the probability of an observation falling into each cat-
egory. Predicting it will rain tomorrow is a deterministic prediction whereas predicting
p̂(rain) = 0.6; p̂(snow) = 0.1; p̂(sunny) = 0.3 is probabilistic.

Formally, a deterministic classification task is given by fCd : X → Y ⊆ N0, and a probabilistic
classification task as fCp : X → Y ⊆ [0, 1]k where k is the number of categories an observation
may fall into. Practically this latter prediction is estimation of the probability mass function
p̂Y (y) = P (Y = y). If only two categories are possible, these reduce to the binary classification
tasks: fBd : X → {0, 1} and fBp : X → [0, 1] for deterministic and probabilistic binary
classification respectively.

Note that in the probabilistic binary case it is common to write the task as predicting
[0, 1] not [0, 1]2 as the classes are mutually exclusive. The class for which probabilities are
predicted is referred to as the positive class, and the other as the negative class.

3.3 Training and predicting
The terms algorithm, learner, and model are often conflated in machine learning. A learner is
a description of a learning algorithm, prediction algorithm, parameters, and hyperparameters.
The learning algorithm is a mathematical strategy to estimate the unknown mapping from
features to outcome as represented by a task, f : X → Y . During training, data, D, is fed into
the learning algorithm and induces the model f̂ . Whereas the learner defines the framework
for training and prediction, the model is the specific instantiation of this framework after
training on data.

After training the model, new data, x∗, can be fed to the prediction algorithm, which is
a mathematical strategy that uses the model to make predictions ŷ = f̂(x∗). Algorithms
can vary from simple linear equations with coefficients to estimate, to complex iterative
procedures that differ considerably between training and predicting.

Algorithms usually involve parameters and hyperparameters. Parameters are learned from
data whereas hyperparameters are set beforehand to guide the algorithms. Model parameters
(or weights), θ, are coefficients to be estimated during model training. Hyperparameters, λ,
control how the algorithms are run but are not directly updated by them. Hyperparameters
can be mathematical, for example the learning rate in a gradient boosting machine (Chap-
ter 16), or structural, for example the depth of a decision tree (Chapter 14). The number
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of hyperparameters usually increases with learner complexity and affects its predictive
performance. Often hyperparameters need to be tuned (Section 3.5) instead of manually set.
Computationally, storing (θ̂, λ) is sufficient to recreate any trained model.

Box 1 (Ridge regression)

Let f : X → Y be the regression task of interest with X ⊆ R and Y ⊆ R. Let
(x, y) = ((x1, y1), . . . , (xn, yn)) be data such that xi ∈ X and yi ∈ Y for all i = 1, ..., n.
Say the learner of interest is a regularized linear regression model with learning
algorithm:

(β̂0, β̂1) := arg min
β0,β1

{
n∑

i=1

(
yi − (β0 + β1xi)

)2 + γβ2
1

}
.

and prediction algorithm:

f̂(ϕ) = β̂0 + β̂1ϕ

The hyperparameters are λ = (γ ∈ R>0) and the parameters are θ = (β0, β1)⊤.
Say that γ = 2 is set and the learner is then trained by passing (x, y) to the learning
algorithm and thus estimating θ̂ and f̂ . A prediction, can then be made by passing
new data x∗ ∈ X to the fitted model: ŷ := f̂(x∗) = β̂0 + β̂1x∗.

3.4 Evaluating and benchmarking
To understand if a model is ‘good’, its predictions are evaluated with a loss function.
Loss functions assign a score to the discrepancy between predictions and true values,
L : Y × Y → R̄. Given (unseen) real-world data, (X∗, y∗), and a trained model, f̂ , the loss
is given by L(f̂(X∗), y∗) = L(ŷ, y∗). For a model to be useful, it should perform well in
general, meaning its generalization error should be low. The generalization error refers to
the model’s performance on new data, rather than just the data encountered during training
and development.

A model should only be used to make predictions if its generalization error was estimated to
be acceptable for a given context. If a model were to be trained and evaluated on the same
data, the resulting loss, known as the training error, would be an overoptimistic estimate
of the true generalization error (James et al. 2013). This occurs as the model is making
predictions for data it has already ‘seen’ and the loss is therefore not evaluating the model’s
ability to generalize to new, unseen data. Estimation of the generalization error requires data
splitting, which is the process of splitting available data, D, into training data, Dtrain ⊂ D,
and testing data, Dtest = D \ Dtrain.

The simplest method to estimate the generalization error is to use holdout resampling, which
is the process of partitioning the data into one training dataset and one testing dataset,
with the model trained on the former and predictions made for the latter. Using 2/3 of
the data for training and 1/3 for testing is a common splitting ratio (Kohavi 1995). For
independent and identically distributed (iid) data, it is generally best practice to partition
the data randomly. This ensures that any potential patterns or information encoded in the
ordering of the data are removed, as such patterns are unlikely to generalize to new, unseen
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data. For example, in clinical datasets, the order in which patients enter a study might
inadvertently encode latent information such as which doctor was on duty at the time, which
could theoretically influence patient outcomes. As this information is not explicitly captured
in measured features, it is unlikely to hold predictive value for future patients. Random
splitting breaks any spurious associations between the order of data and the outcomes.

When data is not iid, for example spatially correlated or time-series data, then random
splitting may not be advisable, see Hornung et al. (2023) for an overview of evaluation
strategies in non-standard settings.

Holdout resampling is a quick method to estimate the generalization error, and is particular
useful when very large datasets are available. However, hold-out resampling has a very high
variance for small datasets and there is no guarantee that evaluating the model on one
hold-out split is indicative of real-world performance.

k-fold cross-validation (CV) can be used as a more robust method to better estimate the
generalization error (Hastie, Tibshirani, and Friedman 2001). k-fold CV partitions the data
into k subsets, called folds. The training data comprises of k−1 of the folds and the remaining
one is used for testing and evaluation. This is repeated k times until each of the folds has
been used exactly once as the testing data. The performance from each fold is averaged into
a final performance estimate (Figure 3.2). It is common to use k = 5 or k = 10 (Leo Breiman
and Spector 1992; Kohavi 1995). This process can be repeated multiple times (repeated
k-fold CV ) and/or k can even be set to n, which is known as leave-one-out cross-validation.

Cross-validation can also be stratified, which ensures that a variable of interest will have
the same distribution in each fold as in the original data. This is important, and often
recommended, in survival analysis to ensure that the proportion of censoring in each fold is
representative of the full dataset (Casalicchio and Burk 2024; Herrmann et al. 2021).

Figure 3.2: Three-fold cross-validation. In each iteration a different dataset is used for
predictions and the other two for training. The performance from each iteration is averaged
into a final, single metric. Image from Casalicchio and Burk (2024) (CC BY-NC-SA 4.0).

Repeating resampling experiments with multiple models is referred to as a benchmark
experiment. A benchmark experiment compares models by evaluating their performance on
identical data, which means the same resampling strategy and folds should be used for all
models. Determining if one model is actually better than another is a surprisingly complex
topic (Benavoli et al. 2017; Demšar 2006; Dietterich 1998; Nadeau and Bengio 2003) and
is out of scope for this book, instead any benchmark experiments performed in this book
are purely for illustrative reasons and no results are expected to generalize outside of these
experiments.
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Box 2 (Evaluating ridge regression)

Let X ⊆ R and Y ⊆ R and let (x∗, y∗) = ((x∗
1, y∗

1), . . . , (x∗
m, y∗

m)) be data previously
unseen by the model trained in Box 1 where xi ∈ X and yi ∈ Y for all i = 1, ..., m.
Predictions are made by passing x∗ to the fitted model yielding ŷ = (ŷ1, . . . ŷm) where
ŷi := f̂(x∗

i ) = β̂0 + β̂1x∗
i .

Say the mean absolute error is used to evaluate the model, defined by

L(ϕ, φ) = 1
n

n∑
i=1
|ϕi − φi|

where (ϕ, φ) = ((ϕ1, φ1), . . . , (ϕn, φn)).
The model’s predictive performance is then calculated as L(ŷ, y∗).

3.5 Hyperparameter Optimization
Section 3.3 introduced model hyperparameters, which control how training and prediction
algorithms are run. Setting hyperparameters is a critical part of model fitting and can
significantly change model performance. Tuning is the process of using internal benchmark
experiments to automatically select the optimal hyper-parameter configuration. For example,
the depth of trees, mr in a random forest (Chapter 14) is a potential hyperparameter to
tune. This hyperparameter may be tuned over a range of values, say [1, 15] or over a discrete
subset, say {1, 5, 15}, for now assume the latter. Three random forests with 1, 5, and 15
tree depth respectively are compared in a benchmark experiment. The depth that results
in the model with the optimal performance is then selected for the hyperparameter value
going forward. Nested resampling is a common method to reduce bias that could occur from
using overlapping data for tuning, training, or testing (Simon 2007). Nested resampling is
the process of resampling the training set again for tuning and then the optimal model is
refit on the entire training data (Figure 3.3).

3.6 Conclusion
Key takeaways

• Machine learning tasks define the predictive problem of interest;
• Regression tasks make predictions for continuous outcomes, such as the amount of

rain tomorrow;
• Classification tasks make predictions for discrete outcomes, such as the predicted

weather tomorrow;
• Both regression and classification tasks may make determiistic predictions (a single

number or category), or probabilistic predictions (the probability of a number or
category);

• Models have parameters that are fit during training and hyperparameters that are
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Figure 3.3: An illustration of nested resampling. The large blocks represent three-fold CV
for the outer resampling for model evaluation and the small blocks represent four-fold CV
for the inner resampling for hyperparameter optimization. The light blue blocks are the
training sets and the dark blue blocks are the test sets. Image and caption from Becker,
Schneider, and Fischer (2024) (CC BY-NC-SA 4.0).
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set or tuned;
• Models should be evaluated on resampled data to estimate the generalization error

to understand future performance.

Further reading

• The Elements of Statistical Learning (Hastie, Tibshirani, and Friedman 2001), An
Introduction to Statistical Learning (James et al. 2013), and Pattern Recognition and
Machine Learning (Bishop 2006) for comprehensive introductions and overviews to
machine learning.

• Applied Machine Learning Using mlr3 in R (Bischl et al. 2024) and Tidy Modeling
(Kuhn and Silge 2023) for machine learning in R

• Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron 2019)
for machine learning in Python.

• Bischl et al. (2012) for discussions about more resampling strategies including
bootstrapping and subsampling.
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Survival Analysis is concerned with data where the outcome is the time until an event takes
place (a ‘time-to-event’). Because the collection of such data takes place in the temporal
domain (it takes time to observe a duration), the event of interest is often unobservable,
for example because it did not occur by the end of the data collection period. In survival
analysis terminology this is referred to as censoring.

This chapter defines basic terminology and mathematical definitions in survival analysis,
which are used throughout this book. Building upon this chapter, Chapter 5 introduces event-
history analysis, which is a generalisation to settings with multiple, potentially competing or
recurrent events, including multi-state outcomes. Concluding this part of the book, Chapter 6
defines different prediction tasks in survival analysis that are used by models and measures
to implement machine learning methods.

While these definitions and concepts are not new to survival analysis, it is imperative they
are understood to build successful models. Evaluation functions (Part II) can identify if
one model is better suited than another to minimize a given objective function, however
they cannot identify if the objective function itself was specified correctly, which depends
on the assumptions about the data generating process. Evaluating models with the wrong
objective function yields meaningless results. Hence, it is of utmost importance for machine
learning practitioners to be able identify and specify the survival problem present in their
data correctly to ensure models are correctly fit and evaluated.

4.1 Quantifying the Distribution of Event Times
This section introduces functions that can be used to fully characterise a probability
distribution, particular focus is given to functions that are important in survival analysis.

Note that we can generally distinguish between event taking place in discrete time or
continuous time. For example, consider the time a politician serves in parliament. If we
consider the number of election cycles they stay in parliament, it would constitute discrete
time, as time can only take values, 1, 2, 3, . . ., that is Y ∈ N>0. On the other hand, the time

21
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an individual stays in hospital is usually determined as the difference between the admission
date-time and discharge date-time, which would constitute a continuous time Y ∈ R≥0.

In practice the differences are often blurred as time-measurement will naturally be discretized
at some level and precision beyond some resolution is often not of interest (hospital length of
stay might be interesting up to days or hours, but not minutes and seconds). Also discrete-
time methods are often applied to continuous time data and vice versa. It is nevertheless
important to make the distinction as it informs mathematical treatment and definition of
the different quantities introduced below.

4.1.1 Continuous Time
For now, assume a continuous, positive, random variable Y taking values in (t.v.i.) R≥0. A
standard representation of the distribution of Y is given by the probability density function
(pdf), fY : R≥0 → R≥0, and cumulative distribution function (cdf), FY : R≥0 → [0, 1]; (τ) 7→
P (Y ≤ τ).

In survival analysis, it is most common to describe the distribution of event times Y via
the survival function and hazard function (or hazard rate) rather than the pdf or cdf. The
survival function is defined as

SY (τ) = P (Y > τ) =
∫ ∞

τ

fY (u) du, (4.1)

which is the probability that an event has not occurred by τ ≥ 0 and thus the complement
of the cdf: SY (τ) = 1− FY (τ). By definition, SY (0) = 1 and S(τ)→ 0 for τ →∞.

The hazard function is given by

hY (τ) = lim
dτ↘0

P (τ ≤ Y < τ + dτ |Y ≥ τ)
dτ

= lim
dτ↘0

P (Y ∈ [τ, τ + dτ)|Y ≥ τ)
dτ

= fY (τ)
SY (τ)

(4.2)

where dτ denotes a time-interval. The hazard rate is often interpreted as the instantaneous
risk of observing an event at τ , given that the event has not been observed before τ . This is
not a probability and hY can be greater than one.

The cumulative hazard function (chf) can be derived from the hazard function by

HY (τ) =
∫ τ

0
hY (u) du, (4.3)

and relates to the survival function via

HY (τ) =
∫ τ

0
hY (u) du =

∫ τ

0

fY (u)
SY (u) du =

∫ τ

0
−S′

Y (u)
SY (u) du = − log(SY (τ))

These last relationships are particularly important, as many methods estimate the hazard
rate, which is then used to calculate the cumulative hazard and survival probability

SY (τ) = exp(−HY (τ)) = exp
(
−
∫ τ

0
hY (u) du

)
(4.4)
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Unless necessary to avoid confusion, subscripts are dropped from SY , hY etc. going forward
and instead these functions are referred to as S, h (and so on).

Usual regression techniques cannot be used to estimate these quantities as Y is only partially
observed, due to different types of censoring and truncation, which are now described.

4.1.2 Discrete Time
Now consider a discrete, positive random variable Ỹ taking value in N>0 and τ ∈ N>0 some
time point in discrete time.

The discrete-time hazard rate

hd
Ỹ

(τ) = P (Ỹ = τ |Ỹ ≥ τ). (4.5)

Thus, in contrast to the continuous time hazard Equation 4.2, the discrete time hazard
is an actual (conditional) probability, rather than a rate and therefore might be easier to
interpret.

The cumulative discrete time hazard is given by

Hd
Ỹ

(τ) =
τ∑

k=1
hd

Ỹ
(k) (4.6)

We then define the inverse probability

sd
Ỹ

(τ) := 1− hd
Ỹ

(τ) = P (Ỹ > τ |Ỹ ≥ τ).

It follows that the probability to survive beyond time point τ is given by

Sd
Ỹ

= P (Ỹ > τ) =
∏
k≤τ

sd
Ỹ

(τ) =
∏
k≤τ

(1− hd
Ỹ

(τ)), (4.7)

and the unconditional probability for an event at time τ is

P (Ỹ = τ) = Sd
Ỹ

(τ − 1)hd
Ỹ

(τ). (4.8)

When applied to continuous time Y , the follow-up is divided in J disjunct intervals
(a0, a1], . . . , (aj−1, aj ] . . . , (aJ−1, aJ ], j = 1, . . . , J such that

Y ∈ (aj−1, aj ]⇔ Ỹ = j

Thus,
hd

Ỹ
(j) = P (Y ∈ (aj−1, aj ]|Y > aj−1)

and
Sd

Ỹ
(j) = P (Y > aj) = SY (aj)

For more details on discrete time-to-event analysis consider (Tutz and Schmid 2016).
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4.2 Single-event, right-censored data
The complexity of Survival Analysis compared to other fields arises from the fact that the
outcome of interest is often only observed partially. In particular, the time-to-event is often
unknown at the end of the observation period, as the event has not occurred yet.

Let,

• X taking values in Rp be the generative random variable representing the data fea-
tures/covariates/independent variables.

• Y taking values in R≥0 be the (partially unobservable) true survival time.
• C taking values in R≥0 be the (partially unobservable) true censoring time.

In the presence of censoring C, it is impossible to fully observe the true outcome of interest,
Y . Instead, the observable variables are defined by

• T := min{Y, C}, the outcome time (realisations are referred to as the observed outcome
time); and

• ∆ := I(Y = T ) = I(Y ≤ C), the event indicator (also known as the censoring or status
indicator).

Together (T, ∆) is referred to as the survival outcome or survival tuple and they form the
dependent variables. The survival outcome provides a concise mechanism for representing
the outcome time and indicating which outcome (event or censoring) took place.

A survival dataset is a n×p, eal-valued matrix defined by D = ((x1, t1, δ1) · · · (xn, tn, δn))⊤,
where (ti, δi) are realisations of the respective random variables (Ti, ∆i) and xi is a p-
dimensional vector, xi = (xi;1 xi;2 · · ·xi;p)⊤ of features.

Finally, the following quantities are used frequently throughout this book and survival
analysis literature more generally. Let (ti, δi)

i.i.d.∼ (T, ∆), i = 1, ..., n, be observed survival
outcomes. Then,

The set of unique outcome times is the set of time-points in which at least one observation
experiences the event or is censored:

UO ⊆ {ti}i∈{1,...,n}

The set of unique event times is the set of time-points in which at least one observation
experiences the event (but not censored):

UD ⊆ {ti : δi = 1}i∈{1,...,n}

The ordered, unique events times may also be denoted by

t(k), k = 1, . . . , m t(1) < t(2) < · · · < t(m), m ≤ n

The risk set at τ , is the index-set of observation units at risk for the event just before τ

Rτ := {i : ti ≥ τ}
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where i is the index of an observation in the data. For right-censored data, R0 = {1, . . . , n}
and Rτ ⊆ Rτ ′ , ∀τ > τ ′. Note that in a continuous setting, ‘just before’ refers to an
infinitesimally smaller time than τ , in practice as this is unobservable the risk set is defined
at τ , hence an observation may both be at risk, and experience an event (or be censored) at
τ .

The number of observations at risk at τ is the cardinality of the risk set at τ ,

nτ :=
∑

i

I(ti ≥ τ) = |Rτ |

Finally, the number of events at τ is defined by,

dτ :=
∑

i

I(ti = τ, δi = 1)

For truly continuous variables, one might expect only one event to occur at each observed
event time: dti = 1, ∀i. In practice, ties are often observed due to finite measurement precision,
such that dτ > 1 occurs frequently in real-world datasets.

The quantities Rτ , nτ , and dτ underlie many models and measures in survival analysis.
Several non-parametric and semi-parametric methods (Chapter 13) like the Kaplan-Meier
estimator (see Section 4.3) are based on the ratio dτ /nτ .

Table 4.1 exemplifies an observed survival dataset, a subset of the tumor data (Bender and
Scheipl 2018), which contains the time until death in days after operation (δi = 1 if death
occurred at the outcome time ti and δi = 0 otherwise).

In this example, the above quantities would be:

• U0 = {268, 397, 519, 1217, 2414}: with 1217 included only once
• UD = {268, 397, 1217}: with the inclusion of 1217 due to the event at t1, not censoring at

t5
• Rτ=1217 = {1, 3, 5} (these subjects’ outcome times are greater or equal to τ = 1217 so

they are at risk for the event at this time)
• nτ=1217 = |R1217| = 3
• dτ=1217 = 1: As only i = 1 experienced the event (and not censoring) at this time.

Table 4.1: Subset of the tumor (Bender and Scheipl 2018) time-to-event dataset. Rows are
individual observations (ID), x;j columns are features, t is observed time-to-event, δ is the
event indicator.

id (i)
age

(x;1) sex (x;2) complications (x;3) days (t) status (δ)
1 71 female no 1217 1
2 70 male no 519 0
3 67 female yes 2414 0
4 58 male no 397 1
5 39 female yes 1217 0
6 59 female no 268 1
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4.3 Kaplan-Meier estimator
Before we go further, we introduce a simple, non-parametric estimator for the survival function
(Equation 4.1), the Kaplan-Meier estimator (Kaplan and Meier 1958). The estimator is useful
for visualising survival data and is a popular baseline model to compare to the predictive
performance of more complex methods. In machine learning terms it can be viewed as a
“featureless” learner for survival analysis.

Using the quantities introduced in Section 4.2, the estimator is defined by:

ŜKM (τ) =
∏

k:t(k)≤τ

(
1−

dt(k)

nt(k)

)
(4.9)

which is a step-function at the observed ordered event times t(k), k = 1, . . . , m with ŜKM (τ) =
1 ∀τ < t(1). It is usually estimated for all unique event times.

For illustration, Figure 4.1 shows the estimated survival probability obtained by applying the
Kaplan-Meier estimator to the full tumor data, containing observations of n = 776 subjects.
By definition, the survival function starts at S(t) = 1 at t = 0 and monotonically decreases
towards S(t) = 0 for t→∞. Dotted lines indicated the median survival, defined as the time
at which the survival function reaches S(t) = 0.5. In this example, the median survival time
is approximately 1500 days, as indicated by the dashed lines. This means that 50% of the
subjects are expected die within 1500 days after operation.

Figure 4.1: Kaplan-Meier estimate for the tumor data (Bender and Scheipl 2018). The
estimated survival probabilities are given by the solid step-function. Dotted lines indicate
the median survival time).

While the Kaplan-Meier estimator does not directly support estimation of covariate effects
on the estimated survival probabilities, it is often used for descriptive analysis by applying
the estimator to different subgroups (referred to as stratification in survival analysis). For
example, Figure 4.2 shows ŜKM separately for subjects aged 50 years or older and subjects
younger than 50 years, respectively. Dashed lines again illustrate median survival times.
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However, note that the median survival time does not exist for the younger age group, as
their estimated survival function does not cross 0.5.

Figure 4.2: Kaplan-Meier estimate for the tumor data (Bender and Scheipl 2018) applied to
subgroups of subjects of 50 or more years old and less than 50 years old, respectively. The
estimated survival probabilities are given by the solid step-function. Dotted lines indicate
the median survival time).

Sometimes the KM Estimator is also used to estimate the distribution of censoring times,
for example to calculate inverse probability of censoring weights (Section 8.1.1). Throughout
this book, we denote the Kaplan-Meier estimator applied to the observed censoring times
(ti, 1− δi) as ĜKM .

4.4 Types of Censoring
Three types of censoring are commonly defined in survival analysis: right-censoring, left-
censoring, and interval-censoring. The latter can be viewed as the most general case. Multiple
types of censoring and/or truncation (Section 4.5) can occur in any given data set and it is
vital to identify which types are present in order to correctly select and specify models and
measures for the data.

Right-censoring
Right-censoring is the most commonly assumed form of censoring in survival data. It occurs
when the event of interest was not experienced during the observation period, which may
happen because it was no longer observable (for example, due to withdrawal from the study)
or because the event did not happen until study end. The exact event time is unknown
but it is known that the event is after the observed censoring time, hence right-censoring
(imagine a timeline from left to right as in Figure 4.3).

Right-censoring can be further divided into Type-I, Type-II and random censoring. Type-I,
or administrative, censoring occurs at the fixed, pre-defined end of an observation period
τu, in which case the outcome is given by (Ti = min(Yi, τu), ∆i = I(Yi ≤ τu)). Censored
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Figure 4.3: Dead and censored subjects (y-axis) over time (x-axis). Black diamonds indicate
true death times and white circles indicate censoring times. Diamonds at the end of dashed
lines are hypothetical (unknown in reality). Vertical line is the study end time. Subjects 1
and 2 die in the study time. Subject 3 is censored in the study and (unknown) dies within the
study time. Subject 4 is censored in the study and (unknown) dies after the study. Subject 5
is censored at study end and (unknown) dies after the end of the study.
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observations are therefore represented as (τu, 0). Type-II censoring also occurs when the
observation period ends. However, in this case the study ends when a pre-defined number of
subjects experienced the event of interest and hence τu is random.

Random censoring occurs when censoring times randomly follow an unknown distribution
and one observes (Ti = min(Yi, Ci), ∆i = I(Yi ≤ Ci)). Different types of right-censoring can,
and sometimes do, co-occur in any given data set.

In practice, these different types of right-censoring are usually handled the same during
modeling and evaluation and so this book refers to ‘right-censoring’ generally, which could
occur from a combination of the above types.

Left- and Interval-censoring
Left-censoring occurs when the event is known to have happened at some unknown time
before observation time, interval-censoring occurs when the event is known to have happened
within some time span, but not the exact time.

Consider a survey about phone use where participants are asked: “How old were you when
you used a smart phone for the first time?”. The possible answers are:

• exact age of first use
• didn’t use a smart phone yet
• did or does use a phone but doesn’t remember age of first time use
• did or does use a phone, remembers a specific age range

The first case represents an exactly observed event time, the second case the familiar right-
censoring, as the event may occur later in life, but it is unknown when. The third case is
referred to as left-censoring, we know the event occurred before the interview, but don’t
know when. The fourth case is an example of interval-censoring, as we know the event
occurred within some age span, but not the exact age.

Interval- and left-censoring also often occurs in medical contexts. For example, some guidelines
suggest annual screenings for skin cancer (starting from a certain age). However, the initial
age at which individuals do screenings and regularity of check ups varies widely. If cancer was
detected between two screenings, the observation is interval-censored. If cancer is detected
at first screening, the observation is left-censored (unless the ‘age’ of the cancer can be
narrowed down based on size and other characteristics, in which case it would become
interval-censored).

Censoring Notation
In the presence of left- or interval-censoring the usual representation of survival outcomes as
(ti, δi) is not sufficient to denote the different types of observations in the data set. Instead,
we represent the data as intervals in which the event occurs. Formally, let Yi the random
variable for time until the event of interest and Li, Ri random variables that define an
interval (Li, Ri] with realisations li, ri. Let further ti the time of observation (for example
age at interview in the phone use example) or last-follow up time for subject i. Then the
event time of subject i is

• left-censored if Yi ∈ (Li = 0, Ri = ti];
• right-censored at ti if Yi ∈ (Li = ti, Ri =∞);
• interval-censored Yi ∈ (Li = li, Ri = ri], li < ri ≤ ti

• exactly observed if Yi ∈ (Li = ti, Ri = ti]
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In the cancer screening example from above it holds that ri = ti and li the last check-up
before ri. In the phone use example, the participants might specify any age range between 0
and ti.

To make this more concrete, consider phone use example data, where ti is the age at interview.
In practice, such data is often stored by creating two variables representing the left (li)
and right border (ri) of the respective intervals (ti is not really needed here to define the
outcome, but included for illustration).

id ti li ri

1 13 13 ∞
2 17 15 15
3 16 14 16
4 16 13 15
5 18 0 18

Here, the first subject is right-censored at 13 years (li = ti = 13, ri =∞), the second subject
remembered exactly (li = ri = 15 < ti = 17), the third subject remembers that it was after
14, but not exact age (li = 14 < ri = 16 = ti), fourth subject remembers use after 13 years
and latest at 15 years of age (li = 13 < ri = 15 < ti), and the fifth subject uses a smart
phone currently at age 18, but cannot specify further (li = 0 < ri = 18 = ti).

From the example above, it is clear, that right- and left-censoring are special cases of
interval-censoring. However, if only right- or left-censoring is present, the likelihood and
estimation simplifies (see Section 4.6). Also note that in case of left- and interval-censoring
the event is known to have occurred, while for right-censoring the event didn’t occur during
time under observation. For left- and right-censoring one might be tempted to consider it an
event δi = 1 without exact time, while right-censoring would be consider a non-event δi = 0.
However, technically it is assumed that the event will always occur, if we wait long enough
(for right-censored data in the interval (ti,∞]). Censoring therefore means having imprecise
information about the time of event rather than information about the event occurring or
not occurring.

Dependent vs. Informative Censoring
Censoring may be defined as uninformative if Y ⊥⊥ C and informative otherwise. However,
these definitions can be misleading as the term ‘uninformative’ could imply that C is
independent of both X and Y , and not just Y . To avoid misinterpretation, the following
definitions are used in this book:

• If C ⊥⊥ X, censoring is feature-independent, otherwise censoring is feature-dependent.
• If C ⊥⊥ Y , censoring is event-independent, otherwise censoring is event-dependent.
• If (C ⊥⊥ Y )|X, censoring is conditionally independent of the event given covariates, or

conditionally event-independent.
• If C ⊥⊥ (X, Y ), censoring is uninformative, otherwise censoring is informative.

Uninformative censoring can generally be well-handled by models as the true underlying
distribution of survival times is not affected by censoring. In fact, in this case one could
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even use regression models after removing censored observations (if they do not form a high
proportion of the data).

In reality, censoring is rarely non-informative as reasons for drop-out or missingness in
outcomes tend to be related to the study of interest. Event-dependent censoring is a tricky
case that, if not handled appropriately (by a competing-risks framework), can easily lead
to poor model development. Imagine a study is interested in predicting the time between
relapses of stroke but a patient suffers a brain aneurysm due to some separate neurological
condition. There is a high possibility that a stroke may have occurred if the aneurysm had
not. A survival model is unlikely to distinguish the censoring event (aneurysm) from the
event of interest (stroke) and will confuse predictions.

In practice, the majority of models and measures assume that censoring is conditionally
event-independent and hence censoring patterns can be predicted/estimated based on the
covariates. For example, if studying the survival time of ill pregnant patients in hospital,
then dropping out of the study due to pregnancy is clearly dependent on how many weeks
pregnant the patient is when the study starts (for the sake of argument assume no early/late
pregnancy due to illness).

4.5 Censoring vs. Truncation
A common confusion is to conflate censoring and truncation, which is problematic as the
methods to handle them differ substantially. Outside of time-to-event settings, truncation
usually refers to truncating (or removing) an entire subject from a dataset. As discussed in
Chapter 1, truncation in survival analysis refers to partially truncating a period of time and
is quite common in the more general event history setting (Chapter 5).

While censored observations have incomplete information about the time-to-event, they are
still part of the data set. Whereas truncation leads to observations not entering the data set
(at least not at time 0). This will usually introduce bias that needs to be accounted for.

Left-truncation
Left-truncation often occurs when inclusion into a study is conditional on the occurrence of
another event. Left-truncation plays an important role when modeling recurrent events or
multi-state data (Chapter 5), thus the concept will be introduced in more detail.

By example, consider a study from the 18th century (Broström 1987), when childhood and
maternal mortality were relatively high. The goal of the study was to establish the effect
of a mother’s death on the survival of the infant. Since each death was reported to the
authorities, an infant was added to the study if and when their mother died. To create a
matched cohort, two other infants, whose mothers were alive, were matched into the study
based on their age and other relevant features. Thus, groups of three infants within the
study had identical features except for the status of the mother (alive or dead). Because of
the study design, infants who died before their mothers could never enter into the study. A
mother’s death is thus referred to as left-truncation event and the infant’s age at time of
inclusion into the study is referred to as left-truncation time.

More formally, let tL
i the subject-specific left-truncation time. Then we only observe subjects

with yi > tL
i and subjects with yi < tL

i never enter the data.
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This is illustrated in Figure 4.4. Continuing with the example above, say Infant 1 dies at t1,
while the mother dies at some later time point tL

1 , therefore infant 1 never enters the study.
The mother of Infant 2 dies at tL

2 , at which point the infant is included in the study and
experiences an event at t2. Finally, say Infant 3 enters the study at tL

3 and is censored at
365 days when the study ends.

Figure 4.4: Illustration of left-truncation data. Subjects 2 and 3 enter the data set as the
study entry condition (mother’s death) occurs before the event of interest occurs after
the left-truncation time (left-truncation time shorter than event time). Subject 1 on the
other hand never enters the data as the event occurs before the study entry condition
(left-truncation time longer than event time).

In this example, left-truncation biases the sample towards healthier or more robust infants,
as frail infants on die earlier and thus on average before their mothers. This would bias the
estimates if not properly taken into account.

Continuing the above example, Figure 4.5 shows the difference between estimated survival
probabilities when left-truncation is ignored (left panel) and taken into account (right panel),
respectively. It is clear that the survival probabilities were underestimated in both groups,
but more so in the group of infants whose mother died (thereby underestimating the effect
of the mothers’ death on infant survival).

To understand this, consider an excerpt from the infants data in Table 4.3.

Table 4.3: Excerpt of the infants (Broström 2024) time-to-event dataset. Rows are individual
observations (id), group indicates matched infants, tL is the left-truncation time (time of
inclusion into the study), t is the observed time, δ is the event indicator.

group id tL t δ mother
1 1 55 365 0 dead
1 2 55 365 0 alive
1 3 55 365 0 alive
2 4 13 76 1 dead
2 5 13 365 0 alive
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group id tL t δ mother
2 6 13 365 0 alive
4 7 2 16 1 dead
4 8 2 365 0 alive
4 9 2 365 0 alive

Now recall the calculation of the Kaplan-Meier estimate from Section 4.3. In Table 4.3,
without stratifying according to mother’s status, the first observed event time is t(1) = t7 = 16.
Then ignoring left-truncation,

• Rt(1) = {1, 2, 3, 4, 5, 6, 7, 8, 9}
• dt(1) = 1
• nt(1) = 9
• S(t(1)) = 1− 1

9 ≈ 0.9

In contrast, when we take left-truncation into account, subjects only enter the risk set for
the event after their left-truncation time (we already know they survived until tL

i so they
are not at risk for the event before that time), thus

• Rt(1) = {4, 5, 6, 7, 8, 9}
• dt(1) = 1
• nt(1) = 6
• S(t(1)) = 1− 1

6 ≈ 0.8

Thus, the definition of the KM estimator in Equation 13.1 can still be used in case of
left-truncation using the more general risk set definition

Rτ = {i : tL
i ≤ τ ≤ ti} (4.10)

Right-truncation
Right-truncation often occurs in retrospective sampling based on registry data, when data
is queried for cases reported by a certain cut-off time (see for example Vakulenko-Lagun,
Mandel, and Betensky (2020)). A common example is the estimation of the incubation
period of an infectious disease, which is the time from infection to the disease onset. Only
known, symptomatic (and/or tested) cases are entered into the database. At a time τ , one
can only observe the subset of the infected population that has already experienced the
disease, and not the population that is still incubating the disease, hence biasing the data to
shorter incubation periods.

Formally, let tr
i be the right-truncation time (here time from infection until the time at

which the database is queried), then subjects only enter the data set when ti < tr
i . This is

illustrated in Figure 4.6 using three subjects. All three subjects were infected during the
observation period, however, the right-truncation time tr

2 of subject 2 is shorter than the
incubation period t2 for this subject, thus at the time of querying the data base, this subject
will not be included in the sample, as t2 > tr

2.

Note the difference to right-censoring. If subject 2 was right-censored, the subject would be
in our sample and the time of infection would be known - the time of disease onset would be
censored. In case of right-truncation on the other hand, the subject is not included in the
sample at time of data extraction, as subjects are only included in the registry after disease
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Figure 4.5: Left: Kaplan-Meier estimate of survival probabilities of infants depending on
status of the mother ignoring left-truncation. Right: Kaplan-Meier estimate of survival
probabilities adjusting for left-truncation.

onset. Overall this leads to a bias towards shorter incubation times and potentially feature
values that lead to shorter incubation times.

Figure 4.6: Illustration of right-truncation based on registry data. For subjects 1 and 3 the
right-truncation time is longer than the incubation period, therefore they are included in the
sample when the registry is queried. For subject 2 on the other hand the right-truncation
time is shorter, therefore it’s excluded from the sample.

As for left-truncation, ignoring right-truncation will lead to biased estimations. While for left-
truncated data simple adjustments of the risk set work for non- and semi-parametric methods
like the Kaplan-Meier and Cox-type estimators, this is not the case for right-truncated data.
However, parametric methods can be employed (see Section 4.6) and generalised product
limit estimators for right-truncated data exist (Michael G. Akritas and LaValley 2005).
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4.6 Estimation
While details about estimation will be given later, when different models are introduced in
Part III and Part IV of the book, it is worthwhile discussing some general concepts here,
namely parametric and non-parametric approaches.

4.6.1 Parametric estimation
Consider for now uncensored data (ti, δi = 1), i = 1, . . . , n. A standard approach would be to
assume a suitable distribution for the event times ti

iid∼ FY (θ), θ = (θ1, θ2, . . .)⊤, and define
the likelihood of the data as

L(θ) =
n∏

i=1
fY (ti|θ) (4.11)

where fY is the pdf of FY .

The model parameters can then be obtained by maximizing the likelihood such that

θ̂ = arg max
θ

L(θ)

However, in the presence of censoring Equation 4.11 is incorrect, as the exact event time is
only known for some subjects. For example, for right-censored data (δi = 0) we only know
that the event occurred after observed censoring time ti. Thus the likelihood contribution
for such data points is P (Yi > ti) = SY (ti), whereas for observed event times (δi = 0) the
likelihood contribution is fY (ti) as before.

Let now O = {i : δi = 1} the index set of observed event times and RC = {i : δi = 0} the
index set of censored observations. The likelihood of this data can be written as

L(θ) ∝
∏
i∈O

fY (ti|θ)
∏

i∈RC
SY (ti|θ)

=
n∏

i=1
fy(ti|θ)δiSY (ti|θ)1−δi

=
n∏

i=1

fy(ti|θ)δi

SY (ti|θ)δi
SY (ti|θ)

=
n∏

i=1
hY (ti|θ)δiSY (ti|θ),

where the last equality follows from Equation 4.2.

Similar adjustments to the likelihood can be made for other types of censoring and in
the presence of truncation. Following Klein and Moeschberger (2003), we can define the
individual likelihood contributions for the different types of censoring as

• observed event at ti: fY (ti|θ)
• right-censoring: P (Yi > ti|θ) = SY (ti|θ)
• left-censoring: P (Yi < ti|θ) = FY (ti|θ) = 1− SY (ti|θ)
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• interval-censoring: P (li < Yi ≤ ri|θ) = SY (li|θ)− SY (ri|θ)

Depending on which of the above contributions occur in the data set, we can now construct
our likelihood accordingly. Let O,RC,LC, IC non-overlapping subsets of the observed data D
for subjects with observed event times, right-censoring, left-censoring and interval-censoring,
respectively. Assuming independence between observations and in absence of truncation, the
likelihood for the observed data can be defined as

L(θ) ∝
∏
i∈O

fY (ti|θ)
∏

i∈RC
SY (ti|θ)

∏
i∈LC

(1− SY (ti|θ))
∏

i∈IC
(SY (li|θ)− SY (ri|θ)) (4.12)

In case of truncation, the adjustments are made to all observations, as we have to condition
on the event occurring after/before the truncation time. The truncation adjusted likelihood
contributions (assuming independence of truncation and event/censoring times) would thus
be given by

• left-truncation:

– event: f(Yi = ti|Yi ≥ tL
i , θ) = fY (ti|θ)

SY (tL
i

|θ)

– left-censoring: P (Yi < ti|Yi ≥ tL
i , θ) = SY (ti|θ)

SY (tL
i

|θ)

– interval-censoring: P (li < Yi ≤ ri|Yi ≥ tL
i , θ) = SY (li|θ)−SY (ri|θ)

SY (tL
i

|θ)

• right-truncation:

– event: f(Yi = ti|Yi ≤ tR
i , θ) = fY (ti|θ)

FY (tR
i

|θ)

– left-censoring: P (Yi < ti|Yi ≤ tR
i , θ) = SY (ti|θ)

FY (tR
i

|θ)

– interval-censoring: P (li < Yi ≤ ri|Yi ≤ tR
i , θ) = SY (li|θ)−SY (ri|θ)

FY (tR
i

|θ)

Note that in in practice, data sets will often not contain all types of censoring or truncation,
in which case Equation 4.12 will contain only a subset of the product terms. This has been
illustrated in Equation 4.12 under absence of truncation and LC = IC = ∅.

4.6.2 Non-parametric estimation
As the name suggests, non-parametric estimation (and semi-parametric estimation) tech-
niques do not make (strong) assumptions about the underlying distribution of event times.

A common principle for such techniques is to partition the follow into intervals or to define
specific time-points during the follow-up and to estimate the continuous or discrete time
hazards (Equation 4.5) for each interval/time-point. Then derive the respective estimates,
for example the survival probability, based on the relationship between the hazard and other
quantities (Section 4.1 or Section 4.1.2).

The Kaplan-Meier estimator introduced earlier (Section 4.3) is an example for this principle.
There, time-points t(k), k = 1, . . . , m are used to calculate the discrete time hazards

hd(t(k)) = P
(
Y ∈ (t(k−1), t(k)]|Y > t(k−1)

)
=

dt(k)

nt(k)

. (4.13)

The survival probability and the definition of the Kaplan-Meier estimator (Equation 13.1)
then follow from Equation 4.7.
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Similarly, the Nelson-Aalen estimator (Nelson (1972),O. Aalen (1978)) for the cumulative
hazard is obtained via Equation 4.6 as

HNA(τ) =
∑

k:t(k)≤τ

hd(t(k)) =
∑

k:t(k)≤τ

dt(k)

nt(k)

. (4.14)

Note that we use a continuous time valued τ for the definition, which implies that HNA,e(τ) =
HNA,e(t(k)) ∀τ ∈ [t(k), t(k+1)). In words: For time points between two unique event times
we assume the previous value of the estimate. Similar to the Kaplan-Meier estimator, HNA

can deal with left-truncated data based on the general risk-set definition Equation 4.10.

Based on Equation 4.4 we can also define a survival probability estimator based on the
Nelson-Aalen estimator of the cumulative hazard Equation 4.14 as

SNA(τ) = exp(−HNA(τ)). (4.15)

This relationship is also used by Breslow (1972) to obtain survival probability estimates in
the context of the Cox model (Chapter 13).

, Major changes expected!

This page is a work in progress and major changes will be made over time.

4.7 Conclusion

Key takeaways

•

Further reading

• For practical discussion about survival models in the context of right-censoring and
left-truncation see McGough et al. (2021)
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, Major changes expected!

This page is a work in progress and major changes will be made over time.

In this chapter we take a more general view on time-to-event data. So far, we only considered
a single potentially censored, outcome of interest. Here we explore more complex settings
with multiple, potentially mutually exclusive events and recurrences of events. In this
generalization, the observed data is sometimes referred to as event-history data and its
analysis as event-history analysis.

One way to think about event history data is in terms of transitions between different states,
as illustrated in Figure 5.1. Usually, a subject starts out in an initial state 0 (for example,
‘healthy’) and from there transitions to different states. States from which further transitions
are possible are called transient (displayed as circles), otherwise a state is called terminal or
absorbing (displayed as squares).

In the single event setting (Figure 5.1, upper left panel), a subject can only transition to one
state (the event of interest). This setting was the focus of Chapter 4. There, the censoring
event was considered independent of the event of interest. In the competing risks setting
(Figure 5.1, upper right panel, Section 5.2), a subject could transition to any of the q mutually
exclusive states, thus the subject is initially at risk for a transition to multiple states. Once
one of them occurs, the process is considered to have concluded (for the modeling purposes).

In the recurrent events setting (Figure 5.1 lower left panel), the same event can be observed
multiple times on the same subject (for example recurrent respiratory infections during one
year). Two different ways to represent recurrent events are shown: (top) reset the status to 0
after occurrence of an event or (bottom) consider the 1st, 2nd, etc. recurrences of the event
as separate states. A detail omitted in the graph: Often recurrent event processes also have
a competing, absorbing event. In this more complex setting, but also in general, recurrent
events are often represented as multi-state process, which we discuss next. Therefore we
forgo detailed discussion of this setting in this book and refer to Cook and Lawless (2007)
for a detailed account specific to recurrent events analysis.

In the most general case, the multi-state setting (Figure 5.1 lower right panel, Section 5.3),
there are multiple transient and terminal states with potential back transitions (for example,
moving between different stages of an illness with the possibility of (partial) recovery and
death as terminal event).

39
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Figure 5.1: Illustration of different types of time-to-event processes. Transient states are
displayed as circles, absorbing states are displayed as squares. Top, left: Standard single-event
setting with transition from initial state 0 to state 1; Top, right: Competing risks setting
with q competing events. The follow-up ends once one of the {1, . . . , q} events is observed or
the study ends; Bottom, left: Recurrent events setting with multiple occurrences of the same
event. Bottom, right: Multi-state setting where subjects can transition between multiple
transient states with possible back-transitions or to absorbing states.
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Note that the concepts discussed in Section 4.4 and Section 4.5 are still relevant here, as,
dependent on the specific process, any transition between two states could be subject to
different types of censoring and truncation. In particular, remaining in one of the transient
states until the end of follow-up constitutes right-censoring with respect to all possible
transitions from that state and left-truncation is particularly important as subjects enter
the risk sets for a transition at different time points in context of recurrent events and
multi-state settings.

5.1 A process point of view
In order to formalize the different settings more conveniently, we introduce the stochastic
process

E(τ) ∈ {0, . . . , q}, τ ≥ 0, (5.1)

which indicates the state that is occupied at time τ .

Using this notation in the single-event setting we get E(τ) ∈ {0, 1} such that the hazard
Equation 4.2 could be written as

h(τ) = lim
dτ↘0

P (Y ∈ [τ, τ + dτ)|Y ≥ τ)
dτ

= lim
dτ↘0

P (E(τ + dτ) = 1|E(τ−) = 0)
dτ

,

(5.2)

where τ− indicates the time point immediately before τ .

This notation doesn’t yield many advantages in the single-event setting, but will shorten
notation later on, particularly in the multi-state setting.

5.2 Competing Risks
In contrast to single-event survival analysis, competing risks are concerned with the time to
the first of multiple, mutually exclusive events.

Table 5.1. shows an excerpt of the sir.adm data (Allignol, Beyersmann, and Schumacher
2008) of patients on an intensive care unit (ICU). Time under observation (time) could
end in one of three outcomes: 1 (discharge alive), 2 (death on ICU) or 0 (neither discharge
nor death at the end of follow-up, which constitutes right-censoring at the end of study).
The interest was in how pneumonia status (pneumonia) at admission to the ICU affects
mortality.
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Table 5.1: Subset of the sir.adm dataset (Allignol, Beyersmann, and Schumacher 2008).
Each row represent one subject,time is the time under observation, status indicates the
outcome observed (0: censored at the end of the study, 1: discharged alive from the ICU, 2:
death in the ICU). pneumonia indicates whether a subject already had pneumonia at ICU
admission.

time status pneumonia

8 0 no
8 0 no

31 1 yes
5 1 no
9 2 no
5 2 no

Contrast this data to the tumor data example in Section 4.3. There, patients were followed
even after hospital discharge, thus loss to follow-up could be considered reasonably inde-
pendent of the event of interest (death). In this study follow-up stopped once patients
were discharged. As discharged patients are healthier compared to the ones who remain
on ICU, assuming independence between the time until discharge and time until death is
unrealistic. Analysis of this data and how the different assumptions (independent censoring
vs. competing risks) affects the estimates is discussed in Section 5.2.2 and Section 5.2.4.

5.2.1 Notation and Definitions
In the competing risks setting, everyone starts out in the initial state 0 and can progress to
one of the absorbing states 1, . . . , q. The goal is to characterize the process E(τ) ∈ {0, . . . , q}
in terms of transition hazards and probabilities.

In extension of Equation 5.2, we define cause-specific hazards

he(τ) = lim
dτ→0

P (E(τ + dτ) = e |E(τ−) = 0)
dτ

. (5.3)

Analogous to the single-event case, we can also define the cause-specific cumulative hazard

He(τ) =
∫ τ

0
he(u) du (5.4)

As competing events are mutually exclusive at any time τ , it is possible to define the all-cause
hazard which is the hazard of any event occurring as the sum of all cause-specific hazards

h(τ) =
q∑

e=1
he(τ), (5.5)

as well as the all-cause cumulative hazard, which can be obtained either via the integral
over the all-cause hazard (Equation 5.5) or as sum of cause-specific cumulative hazards
(Equation 5.4):

H(τ) =
q∑

e=1
He(τ) =

q∑
e=1

∫ τ

0
he(u) du =

∫ τ

0

q∑
e=1

he(u) du

∫ τ

0
h(u) du (5.6)
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The all-cause survival probability gives the probability that none of the events occurred
before τ . This is usually not estimated directly but calculated from the cause specific hazards
instead via Equation 5.6 and Equation 5.7:

S(τ) = P (Y > τ) = exp(−H(τ)) (5.7)

Finally, the probability of experiencing an event e before time τ , which is often referred to
as Cumulative Incidence Function (CIF), is given by

Fe(τ) = P (E(τ) = e)

=
∫ τ

0
fe(u) du =

∫ τ

0
S(u−)he(u) du,

(5.8)

where

• S(u−) is the probability of surviving (not experiencing any of the competing events) until
the time-point shortly before u

• fe(u)du = S(u−)he(u)du is the probability of experiencing event e at time point u (which
follows analogously to Equation 4.2).

Note that here we use the notation S(u−) rather than S(u) to make explicit that we want
the probability to survive until the time point immediately before u. This doesn’t make
much difference in continuous time where P (T > t) = P (T ≥ t), but may be important in
(discrete) approximations (as in Section 5.2.2).

Fe(τ) can be interpreted as the proportion of subjects who experienced event of type e until
time τ . Because the events are mutually exclusive, it holds that

q∑
e=1

Fe(τ) + S(τ) = F (τ) + S(τ) = 1,

where F (τ) is the probability that an event of any type occurring before τ and S(τ) the
probability that no event occurs (Equation 5.7).

Note that all terms of Equation 5.8 can be calculated from the individual hazards (Equa-
tion 5.3). Many estimation procedures for the CIF take this approach, consequently referred
to as cause-specific hazards approach.

5.2.2 Non-parametric estimators
Non-parametric estimators for the cause-specific (cumulative) hazard (Equation 5.4) in the
competing risks setting are derived analogous to the single event case (Section 4.6.2). The
CIF then follows from Equation 5.8.

First, recall from Section 4.2 the definitions of the unique ordered event times t(k), k =
1 . . . , m, the risk-set at time t(k), Rt(k) , the number of events, dt(k) , and number of ob-
servations at risk nt(k) . Assume partitioning of the follow-up into m disjunct intervals
(t(k−1), t(k)], k = 1, . . . , m, such that Y ∈ (t(k−1), t(k)] ⇔ Ỹ = t(k), with Ỹ defined as in
Chapter 21..

An estimate for the cause-specific hazard is derived by updating the numerator in Equa-
tion 4.13 to de,t(k) (the number of events of type e at time t(k)):

hd
e(t(k)) :=

de,t(k)

nt(k)

, e ∈ {1, . . . , q}. (5.9)
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The Nelson-Aalen estimator (Equation 4.14) for the cause-specific cumulative hazard is then
given by

HNA,e(τ) =
∑

k:t(k)≤τ

hd
e(t(k)) =

∑
k:t(k)≤τ

de,t(k)

nt(k)

, (5.10)

which yields a step function for each e, with jumps at time points t(k).

The all-cause survival probability follows from Equation 5.6 and Equation 5.7 as

SNA(τ) = exp
(
−

q∑
e=1

HNA,e(τ)
)

.

Finally, the Aalen-Johansen (AJ) estimator (O. O. Aalen and Johansen (1978)) for the CIF
follows via Equation 4.8 as

FAJ,e(τ) =
∑

k:t(k)≤τ

SNA(τ−)hd
e(τ) =

∑
k:t(k)≤τ

SNA(t(k−1))
de,t(k)

nt(k)

(5.11)

5.2.3 Application to mortality of ICU patients
For illustration of the AJ estimator and the interpretation of the CIFs consider the anal-
ysis conducted in Beyersmann, Allignol, and Schumacher (2012), based on the data from
Table 5.1. Recall that one is interested in estimation of the mortality conditional on pneu-
monia status at admission, while accounting for discharge from the ICU as competing risk
(E ∈ {"discharge", "death"}). While the AJ estimator cannot naturally incorporate feature
information, it can be applied to subgroups of the data (here based on the pneumonia status).
Note that this will yield different sets of unique event times in each group, thus the AJ can
have jumps at different time-points for the two groups.

TODO: clean up text below

Figure 5.2 shows the AJ estimates of the CIFs for each event type (discharge/death) stratified
by pneumonia status. Exemplary, the proportion of subjects with pneumonia being discharged
until τ = 120 days is approximately 75% (F̂discharge(120) = P (Y ≤ 120, E = "discharge") ≈
0.75), while approximately 25% died in the ICU (F̂death(120) = P (Y ≤ 120, E = "death") ≈
0.25). For patients without pneumonia we have F̂discharge(120) ≈ 0.91 and F̂death ≈ 0.09. In
this example, F̂discharge + F̂death ≈ 1 for both pneumonia groups, as only 14 of 747 patients
were censored (neither discharge nor death) at the end of the follow-up.

5.2.4 Independent Censoring vs. Competing Risks
It is worth spending some time to consider the difference between independent right-censoring
and competing risks. Note that for the estimation of the hazard (Equation 5.9), occurrences
of competing events are implicitly assumed right-censored (as de,t(k)) only counts events
of type e and nt(k) contains the same subjects that would remain if events of type ẽ ̸= e
were considered censored before t(k). Nevertheless, competing risks are taken into account
in the definition of the AJ estimator (Equation 5.11), as the all-cause survival probability
(Equation 5.7) depends on all cause-specific hazards.

In contrast, assume that in our analysis of the sir.adm data we would consider time of
discharge as independent right-censoring. As we only have one other event (death), the data
could be treated as single-event, right-censored data as in Chapter 4 and therefore analyzed
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Figure 5.2: Aalen-Johansen estimator for the sir.adm data (Allignol, Beyersmann, and
Schumacher 2008), stratified by pneumonia status at admission to the ICU. Left panel:
Proportion of subjects discharged alive from the ICU. Right panel: Proportion of subjects
who died in the ICU.

using the Nelson-Aalen estimator (Equation 4.15). The probability of death before some
time-point τ could thus be obtained via P (Y ≤ τ) = F (τ) = 1− SNA(τ).

Figure 5.3 shows the estimates obtained under the two assumptions. Solid lines indicate
the probabilities under the competing risks assumption (identical to the right-hand side of
Figure 5.2). Dashed lines are obtained under the independent right-censoring assumption.
Clearly, the probabilities of dying at time τ = 120 are greater when independent censoring
is assumed (≈ 75% vs. ≈ 25% in the pneumonia group and ≈ 62% vs. ≈ 13% in the no
pneumonia group).

5.3 Multi-state Models
The multi-state process can be considered the most general type of time-to-event process, as
other types (single-event, competing risks, recurrent events) can be viewed as special cases.
Multi-state modeling allows realistic depiction of complex processes where subjects can start
in different states and transition back and forth between them.

For illustration consider the prothr dataset (de Wreede, Fiocco, and Putter 2011) of liver
cirrhosis patients from a randomized clinical trial with possible transitions depicted in
Figure 5.4. Patients may have normal (state 0) or abnormal (state 1) levels of prothrombin
(a protein important for blood clotting, produced by the liver) at the beginning of the
trial. Some patients where treated with prednisone (which suppresses immune response
and reduces inflammation) and others received a placebo. Death (state 2) constitutes an
absorbing state.

The goal of the trial was to investigate if treatment (prednisone) slows down or reverses
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Figure 5.3: Estimation of the probability of dying in the ICU conditional on pneumonia
status at admission. Dashed lines give the probabilities under assumption of right-censoring.
Solid lines give the probabilities when taking into account discharge as competing risk.

Figure 5.4: Transition graph for the liver cirrhosis patients.
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disease progression (transitions 0→ 1 and 1→ 0) and reduces mortality (transitions 0→ 2
and 1→ 2).

Table 5.2 shows a subset of the data set and contains for each subject (id)one row for each
transition for which the subject was at risk for. In this example, this includes transitions
that were possible, but didn’t happen (counterfactual transitions). The columns from and
to indicate the initial state and the possible end state. tstart indicates the time at which
the subject entered the risk set for said transitions and tstop the time point at which the
subjects exited the from state (or were censored for any transition). The variable status
indicates whether the transition was actually made (status = 1) or not (status = 0). This
is necessary, as all possible transitions are listed, so we need an indicator for which transition
actually occurred. If status=0 for all possible transitions, the subject is censored for further
transitions. Finally, treatment indicates whether a patient was assigned the treatment or
placebo group.

Concretely, subject id=1 already had abnormal prothrombin levels at the beginning of the
trial, thus started in state 1 with possible transitions 1 → 0 and 1 → 2. In this case, the
patient died, thus transition 1→ 2 was realized after 151 days, while the transition 1→ 0 is
a ‘counterfactual’ transition that could have happened in the time-span between tstart=0
and tend=151, but didn’t. Patient id=8 also started in state 1, but made a back transition
to normal prothrombin levels after 211 days at which time they entered the risk set for
transitions 0 → 1 and 0 → 2. Neither of the transitions occurred, as status=0 for both
transitions, which means the subject remained in status 0 until the end of their follow-up
at 2770 days (that is was right-censored at 2770 days). Finally, subject id=46 started in
state 0 (normal prothrombin levels), transitioned to state 1 (abnormal levels) after 415 days
and then died (transition 1 → 2) two days later. This also illustrates the importance of
left-truncation (Section 4.5) in multi-state processes. For example, subjects id=1 and id=8
are at risk for the transitions 1→ 0 and 1→ 2 from the beginning of the trial (tstart = 0).
Subject id=46 on the other hand starts in state 0 and only enters state 1 (and thus the risk
set for the transitions 1→ 0 and 1→ 2) after 415 days (tstart = 415). Other subjects in
the data may never enter the risk set for these transitions by remaining in state 0 until the
end of follow up or by directly transitioning to state 2. The fact that subjects enter the risk
sets for different transitions at different time points technically constitutes left-truncation
and thus should be taken into account accordingly (Section 5.3.4).

Table 5.2: Subset of the prothr dataset (de Wreede, Fiocco, and Putter 2011).

id from to trans tstart tstop status treatment
1 1 0 3 0 151 0 Placebo
1 1 2 4 0 151 1 Placebo
8 1 0 3 0 211 1 Prednisone
8 1 2 4 0 211 0 Prednisone
8 0 1 1 211 2770 0 Prednisone
8 0 2 2 211 2770 0 Prednisone

46 0 1 1 0 415 1 Prednisone
46 0 2 2 0 415 0 Prednisone
46 1 0 3 415 417 0 Prednisone
46 1 2 4 415 417 1 Prednisone
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5.3.1 Notation and Definitions
In the competing risks setting, we characterized the data generating process by cause-specific
transitions hazards he(τ) (Equation 5.3). Implicitly these are transition from starting state 0
to end state e, however, since everyone starts in stats in state 0 this information is ignored. In
the multi-state setting on the other hand, subjects can be in different states at different time
points. Transitions between different states are therefore characterized by transition-specific
hazards, denoted by hℓ→e(τ) or short hℓe(τ), where ℓ is the starting state and e the end
state, ℓ, e ∈ {0, . . . , q} (ignoring details such as the starting state must be a transient state
and not all states are reachable from each starting state).

Let E(τ) ∈ {0, . . . , q} be the state process as before (Equation 5.1). Then, the transition-
specific hazard can be defined as

hℓe(τ) = lim
dτ→0

P (E(τ + dτ) = e|E(τ−) = ℓ)
dτ

(5.12)

Transition hazards Equation 5.12 indicate the relative risk to enter state e at time τ given
occupation of state ℓ at τ−, which is the instant before τ .

Analogous to the competing risks setting, we can define the transition specific cumulative
hazards

Hℓe(τ) =
∫ τ

0
hℓe(u)du (5.13)

The probability to transition from state ℓ to e between two time-points depends on all
transitions possible from ℓ and potentially the transitions that have taken place in the past.
Thus, other quantities of interest in the multi-state setting are the transition probabilities
Pℓe(ζ, τ) := P (E(τ) = e|E(ζ) = ℓ), that is the probability to transition from state ℓ to state
e between time points ζ < τ . Implicitly, this notation assumes that the process is Markovian:
the transition probability depends only on the state at ζ and not any additional past states.
Extensions do exist that relax this assumption, for example by including information about
the past, but are not relevant for now.

Transition probabilities of a multi-state process are often summarized in a matrix

P(ζ, τ) :=

P00(ζ, τ) · · · P0q(ζ, τ)
... . . . ...

Pq0(ζ, τ) · · · Pqq(ζ, τ)

 , (5.14)

where rows indicate starting states and columns indicate end states. Some of the elements of
P might be zero or one depending on the specific process, presence of absorbing states and
possible pathways between states. As subjects can only be in one of the q + 1 states at τ ,
rows sum to 1:

q∑
e=0

Pℓe = 1,∀ℓ ∈ {0, . . . , q}. (5.15)

5.3.2 Instantaneous transition probabilities
In this section we briefly recap how the transition probabilities can be expressed as the
product (integral) of instantaneous transition probabilities

pℓe(τ) = P
(
E(τ + dτ) = e|E(τ−) = ℓ

)
(5.16)
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which can be recognized as the nominator of Equation 5.12, or intuitively as the transition
probability between two subsequent time points.

For illustration, consider what is often referred to as an illness-death model depicted in
Figure 5.5 (similar to Figure 5.4, but without back-transition), where subjects can transition
from healthy state 0 to absorbing state death (2) either directly or via intermediate state 1.

Figure 5.5: An illness-death model where subjects can transition from healthy state (0) to
death (2) directly or via intermediate illness state (1)

In this example, back-transitions are not possible, therefore the lower triangle of the matrix
is filled with zeros and P22(ζ, τ) = 1, ∀ ζ < τ by virtue of being an absorbing state. The
matrix of transition probabilities is thus given as

P(ζ, τ) =

P00(ζ, τ) P01(ζ, τ) P02(ζ, τ)
0 P11(ζ, τ) P12(ζ, τ)
0 0 1

 (5.17)

First, assume that data is collected in discrete time, that is ζ, τ ∈ {0, 1, 2, . . .}, ζ < τ and
transitions only occur at these discrete time points and not in between. Say we are interested
in transition probability P02(4, 6), that is the probability to transition from state 0 to state 2
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between time points ζ = 4 and τ = 6, given we are in state 0 at time ζ = 4. This is possible
in the three ways depicted in Figure 5.6.

Figure 5.6: Possible paths to transition from state 0 to state 2 between time points 4 and 6

Thus, P02(4, 6) = p00(5)p02(6)+p01(6)p12(6)+p02(5), where pℓe(τ) = P (E(τ) = e|E(τ−1) =
ℓ) are the probabilities for transitions ℓ→ e between two subsequent discrete time points.
Thus, in discrete time, the matrix of transition probabilities can be represented as a finite
matrix product

P(ζ, τ) =
τ∏

j=ζ+1

p00(j) p01(j) p02(j)
0 p11(j) p12(j)
0 0 1

 . (5.18)

For the concrete example we thus have

P(4, 6) =

P00(4, 6) P01(4, 6) P02(4, 6)
0 P11(4, 6) P12(4, 6)
0 0 1

 =
6∏

j=5

p00(j) p01(j) p02(j)
0 p11(j) p12(j)
0 0 1


=

p00(5) p01(5) p02(5)
0 p11(5) p12(5)
0 0 1

p00(6) p01(6) p02(6)
0 p11(6) p12(6)
0 0 1


=

p00(5)p00(6) p00(5)p01(6) + p01(5)p11(6) p00(5)p02(6) + p01(5)p12(6) + p02(5)
0 p11(5)p11(6) p11(5)p12(6) + p12(5)
0 0 1

 ,

where the quantity of interest, P02(4, 6) is given in the top right corner, but other transition
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probabilities are also readily available. For example, the probability to transition from state
1 to 2 between time points ζ = 4 and τ = 6 is given as P12(4, 6) = p11(5)p12(6) + p12(5).

Returning to the continuous time setting where transitions can occur at any time point,
ideas from the discrete time setting still hold. Imagine dividing the interval (ζ, τ ] into J
intervals such that ζ = t0 < t1 < · · · < tj < · · · tJ = τ , assuming that no events occur
between time points tj ∈ R+, j = 1, . . . , J . Then Equation 5.18 still holds when replacing
pℓe(j) with pℓe(tj).

Increasing the number of intervals to infinity or equivalently, reducing the interval size
to infinitesimally small intervals du where only one transition can be observed, leads to a
product integral over the instantaneous transition probabilities pℓe(u) (Equation 5.16), such
that

P(ζ, τ) = lim
du→0

∏
u∈(ζ,τ ]

p00(u) · · · p0q(u)
... . . . ...

pq0(u) · · · pqq(u)

 (5.19)

5.3.3 Instantaneous transition probabilities and hazards
In context of survival analysis we want to express the transition matrix (Equation 5.19) and
thus instantaneous transition probabilities pℓe(u) in terms of (cumulative) hazards. To do
so, we use, somewhat informally, the following relationships

• From equations Equation 5.12 and Equation 5.13 we can equate the instantaneous transition
probabilities to increments of the cumulative hazard (that is the increase in the cumulative
hazard within a (fixed, infinitesimally) small interval du): dHℓe(u) = hℓe(u)du = P

(
E(u +

du) = e|E(u−) = ℓ
)

= pℓe(u),
• because of relationship Equation 5.15, diagonal elements (transitions into the same state)

are set to dHℓℓ(u) := −
∑

e̸=ℓ dHℓe(u) such that 1 + dHℓℓ(u) = 1 −
∑

e̸=ℓ dHℓe(u) =
1−

∑
e̸=ℓ pℓe(u) = pℓℓ(u).

Consequently, Equation 5.19 can be rewritten as

P(ζ, τ) = lim
du→0

∏
u∈(ζ,τ ]

p00(u) = 1 + dH00(u) · · · p0q(u) = dH0q(u)
... . . . ...

pq0(u) = dHq0(u) · · · pqq(u) = 1 + dHqq(u)



= lim
du→0

∏
u∈(ζ,τ ]

(I + dH(u)),

where I is a (q + 1)× (q + 1) identity matrix and dH(u) is the matrix of increments of the
cumulative hazard within infinitesimally small intervals. Thus, similar to the competing
risks setting, relationship Equation 5.19 implies that knowledge of the transition specific
(cumulative) hazards is sufficient to fully specify the multi-state process.

As analytical solutions of Equation 5.19 only exist for specific models, in practice, the
transition probabilities are often once again approximated numerically via a finite matrix
product on a discrete time grid ζ = t0 < t1 < · · · < tJ−1 < tJ = τ

P(ζ, τ) ≈
J∏

j=1
(I +△Hℓe(tj)), (5.20)
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where △Hℓe(tj) = Hℓe(tj)−Hℓe(tj−1) is the increment of the cumulative hazards between
to consecutive time points.

5.3.4 Non-parametric estimation of transition probabilities
From Equation 5.20, it follows that transition probabilities can be estimated by first com-
puting the transition-specific cumulative hazards, Hℓe(τ). Similarly to the competing risks
setting (Section 5.2.2), we can first define the transition specific hazards

hd
ℓe(t(k)) :=

dℓe,t(k)

nℓ;t(k)

,

where

• dℓe,t(k) is the number of subjects that made the transition ℓ→ e at time t(k) and
• nℓ;t(k) is the number of subjects in state ℓ immediately before t(k).

The cumulative transition-specific hazards follow as

HNA,ℓe(τ) =
∑

k:t(k)≤τ

hd
ℓe(t(k)) =

∑
k:t(k)≤τ

dℓe,t(k)

nℓ;t(k)

,

and transition probabilities are obtained via Equation 5.20 as

P(ζ, τ) =
J∏

j=1

(
I +△HNA,ℓe(t(j))

)
. (5.21)

5.3.5 Application to liver cirrhosis patients
For illustration, consider again the prothr data set (Table 5.2), with possible transitions
summarized in Figure 5.4. In contrast to the illness-death model in Figure 5.5, back transitions
are possible and some subjects already start in the “abnormal” state at the beginning of the
study.

Figure 5.7 shows the transition probabilities for the four possible transitions over time for
subjects who received treatment and placebo, respectively. In this example back-transitions
are possible, therefore, in contrast to the cumulative incidence functions in the competing
risks setting, transition probabilities (to transient states) are not monotonously increasing
over time. While the probabilities to transition from normal or abnormal state to death
(0→ 2, 1→ 2) increase over time for both groups, probabilities for transitions between the
transient states (normal to abnormal and vice versa) increase in the beginning but eventually
decreases over time. Overall, prednisone doesn’t appear to have a strong protective effect.
Although there appears to be a reduction in 0 → 2 transitions and an increase in 1 → 0
transitions between time points 1000 and 3000, this effect doesn’t seem to persist until the
end of the follow up.
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Figure 5.7: Estimated transition probabilities for the different transitions of the prothrombin
data example .





6
Survival Task

This chapter introduces the different survival problems and formalises them as survival
tasks. There are four prediction types in survival analysis: relative risks - predicting the
risk of an event, survival times - predicting the time until an event happens, prognostic
index - predicting a linear predictor to assess outcomes based on risk factors, and survival
distributions - predicting the probability of an event taking place over time. These reduce
to three formal survival tasks: deterministic (survival time), ranking (risks and prognostic
index), and probabilistic (distribution). This separation of tasks helps create a taxonomy of
survival models and losses that is used throughout the book.

. Minor changes expected!

This page is a work in progress and minor changes will be made over time.

This final section of this part of the book, brings everything together and considers the
different prediction types that might be of interest in the survival analysis context and
introduces the notion of a survival task more formally. Throughout this chapter let X ⊆ Rn×p

be the feature space.

A general survival prediction problem is one in which (Section 3.1):

• a survival dataset, D, is split for training, Dtrain, and testing, Dtest;
• a survival model is fit on Dtrain; and
• the model predicts a representation of the unknown true survival time, Y , given Dtest.

The process of fitting is model-dependent, and can range from non-parametric methods and
maximum likelihood estimation of model parameters to machine learning approaches. The
model fitting process is discussed on a high-level in Section 3.1 and concrete algorithms
are discussed in Part III of this book. The different survival problems are separated by
prediction types or prediction problems, which can also be thought of as predictions of
different representations of Y . We consider 4 commonly used prediction types:

1. The relative risk of an individual experiencing an event: A single continuous
ranking.

2. The time until an event occurs: A single continuous value.
3. The prognostic index for a model: A single continuous value.
4. The survival distribution: A probability distribution.

The first three of these are referred to as deterministic as they predict a single value whereas
the fourth is probabilistic and returns a full survival distribution. Definitions of these are
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expanded on below but first note that survival predictions differ from other fields in two
respects:

• The observed data used for model training (observed times T , status indicator ∆) is
different from the outcome of interest (event times Y ). This differs from, say, standard
regression in which the same object (a single continuous variable) is used for fitting and
predicting.

• With the exception of the time-to-event prediction, all other prediction types do not predict
the expectation E(Y ), which is often of interest, but some other (related) quantity.

Survival prediction problems must be clearly separated as they are inherently incompatible.
For example, it is not meaningful to compare a relative risk prediction from one model to
a survival distribution prediction of another. Whilst these prediction types are separated
above, they can be viewed as special cases of each other. Both (1.) and (2.) may be viewed
as variants of (3.); and (1.), (2.), and (3.) can all be derived from (4.); this is elaborated on
below and discussed fully in Chapter 19.

6.1 Predicting Risks
This is a common survival problem and is defined as predicting a continuous rank for an
individual’s relative risk of experiencing the event. For example, given three subjects, {i, j, k},
a relative risk prediction may predict the risk of event as {0.1, 0.5, 10} respectively. From
these predictions, the following types of conclusions can be drawn:

• Conclusions comparing subjects. For example, i is at the least risk; the risk of j is
only slightly higher than that of i but the risk of k is considerably higher than j; the
corresponding ranks for i, j, k, are 1, 2, 3;

• Conclusions comparing risk groups. For example, thresholding the risks at 1.0 means that
i and j are in a low-risk group whilst k is in a high-risk group.

Whilst many important conclusions can be drawn from these predictions, the values them-
selves have no meaning when not compared to other individuals. Interpretation of these
rankings depends on the model class (for example, PH and AFT models have opposite
interpretations, Chapter 13) and its parametrization or implementation in specific software.
For some higher ranking implies higher risk whereas others may assume that higher ranking
implies lower risk. In this book, a higher ranking will always imply a higher risk of event (as
in the example above).

Predicting rankings is the primary form of the survival ranking task, defined by predicting a
continuous value, g : X → R where R ⊆ R.

6.2 Predicting Survival Times
Predicting a time to event is the problem of predicting the expectation ŷ = E(Y |x). A
time-to-event prediction is a special case of a ranking prediction as an individual with a
longer survival time will have a lower overall risk: if ŷi, ŷj and r̂i, r̂j are survival time and
ranking predictions for subjects i and j respectively, then ŷi > ŷj ⇒ r̂i < r̂j .
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For practical purposes, the expected time-to-event would be the ideal prediction type as it
is easy to interpret and communicate. However, this type of prediction is rare for multiple
reasons. For one, an usuall loss based on f(yi) or some difference of true and predicted value,
yi− ŷi is not, suitable for censored data, as yi is not observed for some observations, so direct
estimation/prediction of ŷi = E(Y |xi) requires some imputation of censored observations
(and evaluation on new data can also only be done on observed or imputed values).

Alternatively, one could derive the expectation by predicting the survival distribution while
taking into account the censoring and obtain a time-to-event prediction by calculating
expected values, but this brings its own challenges and pitfalls (see “Survival Distribution”
below for details).

Predicting survival times is the deterministic survival task, defined by predicting a continuous
value in the positive Reals and is specified by g : X → R≥0. See Section 24.1 for practical
discussion around predicting in R≥0 vs. R>0 and continuous vs discrete time representations.
Formally, whilst this is a special case of the ranking task with R ⊆ R≥0, the distinction is
important as a ‘deterministic’ prediction specifically refers to forecasting a single determined
outcome with a meaningful interpretation, whereas the ‘ranking’ task is not a deterministic
forecast of an event.

6.3 Prognostic Index Predictions
In medical terminology (which is often used in survival analysis), a prognostic index is a tool
that predicts outcomes based on risk factors. Given covariates, X ∈ Rn×p, and coefficients,
β ∈ Rp, the linear predictor is defined as η := Xβ. Applying some function g, which could
simply be the identity function g(x) = x, yields a prognostic index, g(η). A prognostic index
can serve several purposes, including:

1. Scaling or normalization – simple functions to scale the linear predictor can better
support interpretation and visualisation;

2. Capturing non-linear effects – for example the Cox PH model (Chapter 13) applies
the transformation g(η) = exp(η) to capture more complex relationships between
features and outcomes;

3. Aiding in interpretability – in some cases this could simply be g(η) = −η to
ensure the ‘higher value implies higher risk’ interpretation.

A prognostic index is a special case of the survival ranking task, assuming that there is a
one-to-one mapping between the prediction and expected survival times. Once again, it is
assumed in this book that a higher value for the prognostic index implies higher risk of
event.

6.4 Predicting Distributions
Predicting a survival distribution refers specifically to predicting the distribution of a subject’s
survival time, i.e., modelling the distribution of the event occurring over R≥0. Therefore,
this is seen as the probabilistic analogue to the deterministic time-to-event prediction.



58 Survival Task

Distributional prediction can, in theory, target any of the quantities introduced in Section 4.1,
but predicting S(t) and/or h(t) is most common. Hazard based approaches are particularly
relevant for non- and semi-parametric estimation of the distribution, where no (or few)
assumptions are made about the underlying distribution of event times.

As mentioned above, all prediction types can theoretically be derived from a survival
distribution prediction. For example, a time-to-event prediction can be obtained via E(Y |x) =∫∞

0 Ŝ(t). However, for non-parametric methods the estimated cdf is often improper in the
presense of censoring and thus integration requires extrapolation of the cdf (R. Sonabend,
Bender, and Vollmer 2022). For parametric models, the distribution of event times is fully
specified once the paramers of the assumed distribution have been estimated, however, if the
parameters were estimated based on only a small subset of the possible domain of Y , this
essentially still constitutes extrapolation and will in most cases yield implausible predictions.
A popular alternative is therefore to estimate the restricted mean survival time (RMST; K.
Han and Jung (2022); Andersen, Hansen, and Klein (2004)).

Predicting survival distributions is a type of probabilistic survival task, defined by predicting
a conditional distribution over the positive Reals, g : X → S where S ⊆ Distr(R≥0) is a
convex set of distributions on R≥0.

6.5 Conclusion

Key takeaways

• There are three survival tasks: probabilistic, deterministic, and ranking;
• Probabilistic tasks predict a survival distribution, which is the probability of an

event occurring over time;
• Deterministic tasks predict a survival time, which is a useful value but hard to

estimate and evaluate in practice;
• Ranking tasks predict ranks that can be compared within cohorts to identify relative

risks. Predicting a prognostic index is a special case of a ranking prediction.

Further reading

•
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What are Survival Measures?
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In this part of the book we discuss one of the most important parts of the machine learning
workflow, model evaluation (Foss and Kotthoff 2024). In the next few chapters we will discuss
different metrics that can be used to measure a model’s performance but before that we will
just briefly discuss why model evaluation is so important.

In the simplest case, without evaluation there is no way to know if predictions from a trained
machine learning model are any good. Whether one uses a simple Kaplan-Meier estimator, a
complex neural network, or anything in between, there is no guarantee any of these methods
will actually make useful predictions for a given dataset. This could be because the dataset
is inherently difficult for any model to be trained on, perhaps because it is very ‘noisy’,
or because a model is simply ill-suited to the task, for example using a Cox Proportional
Hazards model when its key assumptions are violated. Evaluation is therefore crucial to
trusting any predictions made from a model.

7.1 Survival Measures
Evaluation can be used to assess in-sample and out-of-sample performance.

In-sample evaluation measures the quality of a model’s ‘fit’ to data, i.e., whether the model
has accurately captured relationships in the training data. However, in-sample measures often
cannot be applied to complex machine learning models so this part of the book omits these
measures. Readers who are interested in this are are directed to Collett (2014) and Hosmer
Jr, Lemeshow, and May (2011) for discussion on residuals; Choodari-Oskooei, Royston, and
Parmar (2012), Kent and O’Quigley (1988) and Patrick Royston and Sauerbrei (2004) for
R2 type measures; and finally Volinsky and Raftery (2000), HURVICH and TSAI (1989),
and Liang and Zou (2008) for information criterion measures.

Out-of-sample measures evaluate the quality of model predictions on new and previously
unseen (by the model) data. By following established statistical methods for evaluation, and
ensuring that robust resampling methods are used (James et al. 2013), evaluation provides a
method for estimating the ‘generalisation error’, which is the expected model performance
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on new datasets. This is an important concept as it provides confidence about future model
performance without limiting results to the current data. Survival measures are classified
into measures of:

• Discrimination (aka ‘separation’) – A model’s discriminatory power refers to how well it
separates observations that are at a higher or lower risk of event. For example, a model
with good discrimination will predict that (at a given time) a dead patient has a higher
probability of being dead than an alive patient.

• Calibration – Calibration is a roughly defined concept (Collins et al. 2014; F. E. Harrell,
Lee, and Mark 1996; Rahman et al. 2017; Van Houwelingen 2000) that generally refers to
how well a model captures average relationships between predicted and observed values.

• Predictive Performance – A model is said to have good predictive performance (or sometimes
‘predictive accuracy’) if its predictions for new data are ‘close to’ the truth.

These measures could also be categorised into how they evaluate predictions. Discrimination
measures compare predictions pairwise where pairs of observations are created and then the
predictions for these pairs are compared within and across each other in some way. Calibration
measures evaluate predictions holistically by looking at some ‘average’ performance across
them to provide an idea of how well suited the model is to the data. Measures of predictive
performance evaluate individual predictions and usually take the sample mean of these to
estimate the generalisation error.

In the next few chapters we categorise measures by the type of survival prediction they
evaluate, which is a more natural taxonomy for selecting measures, but we use the above
categories when introducing each measure.

7.2 How are Models Evaluated?
As well as using measures to evaluate a model’s performance on a given dataset, evaluation
can also be used to measure future performance, to compare and select models, and to tune
internal processes. In most cases, models should not be trained/predicted/evaluated on their
own, instead a number of simpler reference models should be simultaneously trained and
evaluated on the same data, which is known as a ‘benchmark experiment’. This is especially
important for survival models, as all survival measures depend on the censoring distribution
and therefore cannot be interpreted out of context and without comparison to other models.
Benchmark experiments are used to empirically compare models across the same data and
measures, meaning that if one model outperforms another then that model can be selected
for future experiments (though simpler models are preferred if the performance difference is
marginal). A model is usually said to ‘outperform’ another if it has a lower generalisation
error.

The process of model evaluation is dependent on the measure itself. Measures that are
‘decomposable’ (predictive performance measures) calculate scores for individual predictions
and take the sample mean over all scores, on the other hand ‘aggregate’ measures (discrimi-
nation and calibration) return a single score over all predictions. The simplest method to
estimate the generalisation error is ‘holdout’ resampling, where a dataset D is split into
non-overlapping subsets for training Dtrain and testing Dtest. The model is trained on Dtrain

and predictions, ŷ are made based on the features in Dtest. The model is evaluated by using
a measure, L, to compare the predictions to the observed data in the test set, L(ytest, ŷ).
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Where possible, (repeated) k-fold cross-validation (kCV) should be used for more robust
estimation of the generalisation error and for model comparison. In kCV, the data is
partitioned into k folds (often k is 5 or 10), which are non-overlapping subsets. A model is
trained on k − 1 folds and evaluated on the kth fold, this process is repeated until each of
the k folds has acted as the test set exactly once, the computed loss from each iteration is
averaged into the final loss, which provides a good estimate of the generalisation error.

For the rest of this part of the book we will introduce different survival measures, discuss their
advantages and disadvantages, and in Chapter 12 we will provide some recommendations for
choosing measures. We will not discuss the general process of model resampling or evaluation
further but recommend Casalicchio and Burk (2024) to readers interested in this topic.
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The next measures discused are ‘discrimination measures’, which evaluate how well models
separate observations into different risk groups. A model is said to have good discrimination
if it correctly predicts that one observation is at higher risk of the event of interest than
another, where the prediction is ‘correct’ if the observation predicted to be at higher risk
does indeed experience the event sooner.

In the survival setting, the ‘risk’ is taken to be the continuous ranking prediction. All
discrimination measures are ranking measures, which means that the exact predicted value is
irrelevant, only its relative ordering is required. For example given predictions {100, 2, 299.3},
only their rankings, {2, 1, 3}, are used by measures of discrimination.

This chapter begins with time-independent measures (Section 8.1), which measure concor-
dance between pairs of observations at a single observed time point. The next section focuses
on time-dependent measures (Section 8.2), which are primarily AUC-type measures that
evaluate discrimination over all possible unique time-points and integrate the results for a
single metric.

8.1 Time-Independent Measures
The simplest form of discrimination measures are concordance indices, which, in general,
measure the proportion of cases in which the model correctly ranks a pair of observations
according to their risk. These measures may be best understood in terms of two key definitions:
‘comparable’, and ‘concordant’.

Definition 8.1 (Concordance). Let (i, j) be a pair of observations with outcomes
{(ti, δi), (tj , δj)} and let ri, rj ∈ R be their respective risk predictions. Then (i, j) are
called (F. E. J. Harrell et al. 1984; F. E. Harrell, Califf, and Pryor 1982):

• Comparable if ti < tj and δi = 1;
• Concordant if ri > rj .
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Note that this book defines risk rankings such that a higher value implies higher risk of event
and thus lower expected survival time (?@sec-surv-set-types), hence a pair is concordant
if I(ti < tj , ri > rj). Other sources may instead assume that higher values imply lower risk
of event and hence a pair would be concordant if I(ti < tj , ri < rj).

Concordance measures then estimate the probability of a pair being concordant, given that
they are comparable:

P (ri > rj |ti < tj ∩ δi)

These measures are referred to as time independent when ri, rj is not a function of time as
once the observations are organised into comparable pairs, the observed survival times can
be ignored. The time-dependent case is covered in Section 8.2.1.

While various definitions of a ‘Concordance index’ (C-index) exist (discussed in the next
section), they all represent a weighted proportion of the number of concordant pairs over
the number of comparable pairs. As such, a C-index value will always be between [0, 1]
with 1 indicating perfect separation, 0.5 indicating no separation, and 0 being separation
in the ‘wrong direction’, i.e. all high risk observations being ranked lower than all low risk
observations.

Concordance measures may either be reported as a value in [0, 1], a percentage, or as ‘dis-
criminatory power’, which refers to the percentage improvement of a model’s discrimination
above the baseline value of 0.5. For example, if a model has a concordance of 0.8 then its
discriminatory power is (0.8−0.5)/0.5 = 60%. This representation of discrimination provides
more information by encoding the model’s improvement over some baseline although is often
confused with reporting concordance as a percentage (e.g. reporting a concordance of 0.8
as 80%). In theory this representation could result in a negative value, however this would
indicate that C < 0.5, which would indicate serious problems with the model that should be
addressed before proceeding with further analysis. Representing measures as a percentage
over a baseline is a common method to improve measure interpretability and closely relates
to the ERV representation of scoring rules (Section 10.4).

8.1.1 Concordance Indices
Common concordance indices in survival analysis can be expressed as a general measure:

Let r̂ = (r̂1 r̂2 · · · r̂m)⊤ be predicted risks, (t, δ) = ((t1, δ1) (t2, δ2) · · · (tm, δm))⊤ be observed
outcomes, let W be some weighting function, and let τ be a cut-off time. Then, the time-
independent (‘ind’) survival concordance index is defined by,

Cind(r̂, t, δ|τ) =
∑

i̸=j W (ti)I(ti < tj , r̂i > r̂j , ti < τ)δi∑
i̸=j W (ti)I(ti < tj , ti < τ)δi

The choice of W specifies a particular variation of the c-index (see below). The use of the
cut-off τ mitigates against decreased sample size (and therefore high variance) over time
due to the removal of censored observations (see Figure 8.1)). For τ to be comparable across
datasets, a common choice would be to set τ as the time at which 80%, or perhaps 90% of
the data have been censored or experienced the event.

There are multiple methods for dealing with tied predictions and times. Strictly, tied times
are incomparable given the definition of ‘comparable’ given above and hence are usually
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ignored in the numerator. On the other hand, ties in the prediction are more problematic
but a common method is to set a value of 0.5 for observations when ri = rj (Therneau and
Atkinson 2020). Specific concordance indices can be constructed by assigning a weighting
scheme for W which generally depends on the Kaplan-Meier estimate of the survival function
of the censoring distribution fit on training data, ĜKM , or the Kaplan-Meier estimate
for the survival function of the survival distribution fit on training data, ŜKM , or both.
Measures that use ĜKM are referred to as Inverse Probability of Censoring Weighted (IPCW)
measures as the estimated censoring distribution is utilised to weight the measure in order
to compensate for removed censored observations. This is visualised in Figure 8.1 where
ĜKM , Ĝ−2

KM , and ŜKM are computed based on the whas dataset (Hosmer Jr, Lemeshow,
and May 2011).

Figure 8.1: Weighting functions obtained on the whas dataset. x-axis is follow-up time. y-axis
is outputs from one of three weighting functions: ĜKM , survival function based on the
censoring distribution of the whas dataset (red), and Ĝ−2

KM (green), ŜKM , marginal survival
function based on original whas dataset (blue), . The vertical gray line at t = τ = 1267
represents the point at which Ĝ(t) < 0.6.

The following weights have been proposed for the concordance index:

• W (ti) = 1: Harrell’s concordance index, CH (F. E. J. Harrell et al. 1984; F. E. Harrell,
Califf, and Pryor 1982), which is widely accepted to be the most common survival measure
and imposes no weighting on the definition of concordance. The original measure given by
Harrell has no cut-off, τ =∞, however applying a cut-off is now more widely accepted in
practice.

• W (ti) = [ĜKM (ti)]−2: Uno’s C, CU (Uno et al. 2011).
• W (ti) = [ĜKM (ti)]−1

• W (ti) = ŜKM (ti)
• W (ti) = ŜKM (ti)/ĜKM (ti)

All methods assume that censoring is conditionally-independent of the event given the features
(?@sec-surv-set-cens), otherwise weighting by ŜKM or ĜKM would not be applicable. It
is assumed here that ŜKM and ĜKM are estimated on the training data and not the testing
data (though the latter may be seen in some implementations, e.g. Therneau (2015)).
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8.1.2 Choosing a C-index
With multiple choices of weighting available, choosing a specific measure might seem daunting.
Matters are only made worse by debate in the literature, reflecting uncertainty in measure
choice and interpretation. In practice, when a suitable cut-of τ is chosen, all these weightings
perform very similarly (Rahman et al. 2017; Schmid and Potapov 2012). For example,
Table 8.1 uses the whas data again to compare Harrell’s C with measures that include IPCW
weighting, when no cutoff is applied (top row) and when a cutoff is applied when Ĝ(t) = 0.6
(grey line in Figure 8.1). The results are almost identical when the cutoff is applied but still
not massively different without the cutoff.

Table 8.1: Comparing C-index measures (calculated on the whas dataset using a Cox model
with three-fold cross-validation) with no cut-off (top) and a cut-off when Ĝ(t) = 0.6 (bottom).
First column is Harrell’s C, second is the weighting 1/Ĝ(t), third is Uno’s C.

W = 1 W = G−1 W = G−2

τ =∞ 0.74 0.73 0.71
τ = 1267 0.76 0.75 0.75

On the other hand, if a poor choice is selected for τ (cutting off too late) then IPCW
measures can be highly unstable (Rahman et al. 2017), for example the variance of Uno’s C
drastically increases with increased censoring (Schmid and Potapov 2012).

In practice, all C-index metrics provide an intuitive measure of discrimination and as such
the choice of C-index is less important than the transparency in reporting. ‘C-hacking’ (R.
Sonabend, Bender, and Vollmer 2022) is the deliberate, unethical procedure of calculating
multiple C-indices and to selectively report one or more results to promote a particular
model or result, whilst ignoring any negative findings. For example, calculating Harrell’s C
and Uno’s C but only reporting the measure that shows a particular model of interest is
better than another (even if the other metric shows the reverse effect). To avoid ‘C-hacking’:

i) the choice of C-index should be made before experiments have begun and the
choice of C-index should be clearly reported;

ii) when ranking predictions are composed (Chapter 19) from distribution predictions,
the composition method should be chosen and clearly described before experiments
have begun.

As the C-index is highly dependent on censoring within a dataset, C-index values between
experiments are not directly comparable, instead comparisons are limited to comparing
model rankings, for example conclusions such as “model A outperformed model B with
respect to Harrell’s C in this experiment”.

8.2 Time-Dependent Measures
In the time-dependent case, where the metrics are computed based on specific survival times,
the majority of measures are based on the Area Under the Curve, with one exception which
is a simpler concordance index.
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8.2.1 Concordance Indices
In contrast to the measures described above, Antolini’s C (Antolini, Boracchi, and Biganzoli
2005) provides a time-dependent (‘dep’) formula for the concordance index. The definition of
‘comparable’ is the same for Antolini’s C, however, concordance is now determined using the
individual predicted survival probabilities calculated at the smaller event time in the pair:

P (Ŝi(ti) < Ŝj(ti)|ti < tj ∩ δi)

Note that observations are concordant when Ŝi(ti) < Ŝj(ti) as at the time ti, observation i
has experienced the event and observation j has not, hence the expected survival probability
for Ŝi(ti) should be as close to 0 as possible (noting inherent randomness may prevent the
perfect Ŝi(ti) = 0 prediction) but otherwise should be less than Ŝj(ti) as j is still ‘alive’.
Once again this probability is estimated with a metric that could include a cut-off and
different weighting schemes (though this is not included in Antolini’s original definition):

Cdep(Ŝ, t, δ|τ) =
∑

i̸=j W (ti)I(ti < tj , Ŝi(ti) < Ŝj(ti), ti < τ)δi∑
i̸=j W (ti)I(ti < tj , ti < τ)δi

where Ŝ = (Ŝ1 Ŝ2 · · · Ŝm)⊤.

Antolini’s C provides an intuitive method to evaluate the discrimination of a model based
on distribution predictions without depending on compositions to ranking predictions.

8.2.2 Area Under the Curve

. Warning

We are still discussing how to structure and write this section so the contents are all
subject to change. The text below is ‘correct’ but we want to add more detail about
estimation of AUC so the book can be more practical, otherwise we may remove the
section completely, let us know your thoughts about what you’d like to see here!

AUC, or AUROC, measures calculate the Area Under the Receiver Operating Characteristic
(ROC) Curve, which is a plot of the sensitivity (or true positive rate (TPR)) against
1− specificity (or true negative rate (TNR)) at varying thresholds (described below) for the
predicted probability (or risk) of event. Figure 8.2 visualises ROC curves for two classification
models. The blue line is a featureless baseline that has no discrimination. The red line is a
decision tree with better discrimination as it comes closer to the top-left corner.

In a classification setting with no censoring, the AUC has the same interpretation as Harrell’s
C (Uno et al. 2011). AUC measures for survival analysis were developed to provide a time-
dependent measure of discriminatory ability (Patrick J. Heagerty, Lumley, and Pepe 2000). In
a survival setting it can reasonably be expected for a model to perform differently over time
and therefore time-dependent measures are advantageous. Computation of AUC estimators
is complex and as such there are limited accessible metrics available off-shelf. There is limited
evidence of these estimators used in the literature, hence discussion of these measures is
kept brief.

The AUC, TPR, and TNR are derived from the confusion matrix in a binary classification
setting. Let bi, b̂i ∈ {0, 1} be the true and predicted binary outcomes respectively for some
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Figure 8.2: ROC Curves for a classification example. Red is a decision tree with good discrim-
ination as it ‘hugs’ the top-left corner. Blue is a featureless baseline with no discrimination
as it sits on y = x.

observation i. The confusion matrix is then given by:

bi = 1 bi = 0
b̂i = 1 TP FP
b̂i = 0 FN TN

where TN :=
∑

i I(bi = 0, b̂i = 0) is the number of true negatives, TP :=
∑

i I(bi = 1, b̂i = 1)
is the number true positives, FP :=

∑
i I(bi = 0, b̂i = 1) is the number of false positives, and

FN :=
∑

i I(bi = 1, b̂i = 0) is the number of false negatives. From these are derived

TPR := TP

TP + FN

TNR := TN

TN + FP

In classification, a probabilistic prediction of an event can be thresholded to obtain a
deterministic prediction. For a predicted p̂ := P̂ (b = 1), and threshold α, the thresholded
binary prediction is b̂ := I(p̂ > α). This is achieved in survival analysis by thresholding the
linear predictor at a given time for different values of the threshold and different values of
the time. All measures of TPR, TNR and AUC are in the range [0, 1] with larger values
preferred.

Weighting the linear predictor was proposed by Uno et al. (2007) (Uno et al. 2007) and
provides a method for estimating TPR and TNR via
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TPRU (η̂, t, δ|τ, α) =
∑m

i=1 δiI(k(η̂i) > α, ti ≤ τ)[ĜKM (ti)]−1∑m
i=1 δiI(ti ≤ τ)[ĜKM (ti)]−1

and

TNRU (η̂, t|τ, α) 7→
∑m

i=1 I(k(η̂i) ≤ α, ti > τ)∑m
i=1 I(ti > τ)

where η̂ = (η̂1 η̂2 · · · η̂m)⊤ is a vector of predicted linear predictors, τ is the time at which
to evaluate the measure, α is a cut-off for the linear predictor, and k is a known, strictly
increasing, differentiable function. k is chosen depending on the model choice, for example if
the fitted model is PH then k(x) = 1− exp(− exp(x)) (Uno et al. 2007). Similarities can be
drawn between these equations and Uno’s concordance index, in particular the use of IPCW.
Censoring is again assumed to be at least random once conditioned on features. Plotting
TPRU against 1− TNRU for varying values of α provides the ROC.

The second method, which appears to be more prominent in the literature, is derived from
Heagerty and Zheng (2005) (Patrick J. Heagerty and Zheng 2005). They define four distinct
classes, in which observations are split into controls and cases.

An observation is a case at a given time-point if they are dead, otherwise they are a control.
These definitions imply that all observations begin as controls and (hypothetically) become
cases over time. Cases are then split into incident or cumulative and controls are split into
static or dynamic. The choice between modelling static or dynamic controls is dependent on
the question of interest. Modelling static controls implies that a ‘subject does not change
disease status’ (Patrick J. Heagerty and Zheng 2005), and few methods have been developed
for this setting (Kamarudin, Cox, and Kolamunnage-Dona 2017), as such the focus here is on
dynamic controls. The incident/cumulative cases choice is discussed in more detail below.1

The TNR for dynamic cases is defined as

TNRD(r̂, N |α, τ) = P (r̂i ≤ α|Ni(τ) = 0)
where r̂ = (r̂1 r̂2 · · · r̂n)⊤ is some deterministic prediction and N(τ) is a count of the number
of events in [0, τ). Heagerty and Zheng further specify y to be the predicted linear predictor
η̂. Cumulative/dynamic and incident/dynamic measures are available in software packages
‘off-shelf’, these are respectively defined by

TPRC(r̂, N |α, τ) = P (r̂i > α|Ni(τ) = 1)
and

TPRI(r̂, N |α, τ) = P (r̂i > α|dNi(τ) = 1)
where dNi(τ) = Ni(τ)−Ni(τ−). Practical estimation of these quantities is not discussed
here.

1All measures discussed in this section evaluate model discrimination from ‘markers’, which may be a
predictive marker (model predictions) or a prognostic marker (a single covariate). This section always defines
a marker as a ranking prediction, which is valid for all measures discussed here with the exception of one
given at the end.
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The choice between the incident/dynamic (I/D) and cumulative/dynamic (C/D) measures
primarily relates to the use-case. The C/D measures are preferred if a specific time-point is
of interest (Patrick J. Heagerty and Zheng 2005) and is implemented in several applications
for this purpose (Kamarudin, Cox, and Kolamunnage-Dona 2017). The I/D measures are
preferred when the true survival time is known and discrimination is desired at the given
event time (Patrick J. Heagerty and Zheng 2005).

Defining a time-specific AUC is now possible with

AUC(r̂, N |τ) =
∫ 1

0
TPR(r̂, N |1− TNR−1(p|τ), τ) dp

Finally, integrating over all time-points produces a time-dependent AUC and as usual a
cut-off is applied for the upper limit,

AUC∗(r̂, N |τ∗) =
∫ τ∗

0
AUC(r̂, N |τ)2p̂KM (τ)ŜKM (τ)

1− Ŝ2
KM (τ∗)

dτ

where ŜKM , p̂KM are survival and mass functions estimated with a Kaplan-Meier model on
training data.

Since Heagerty and Zheng’s paper, other methods for calculating the time-dependent AUC
have been devised, including by Chambless and Diao (Chambless and Diao 2006), Song
and Zhou (Song and Zhou 2008), and Hung and Chiang (Hung and Chiang 2010). These
either stem from the Heagerty and Zheng paper or ignore the case/control distinction and
derive the AUC via different estimation methods of TPR and TNR. Blanche et al. (2012)
(Blanche, Latouche, and Viallon 2012) surveyed these and concluded ‘’regarding the choice
of the retained definition for cases and controls, no clear guidance has really emerged in
the literature’‘, but agree with Heagerty and Zeng on the use of C/D for clinical trials
and I/D for ’pure’ evaluation of the marker. Blanche et al. (2013) (Blanche, Dartigues,
and Jacqmin-Gadda 2013) published a survey of C/D AUC measures with an emphasis on
non-parametric estimators with marker-dependent censoring, including their own Conditional
IPCW (CIPCW) AUC, which is not discussed further here as it cannot be used for evaluating
predictions (R. E. B. Sonabend 2021).

Reviews of AUC measures have produced (sometimes markedly) different results (Blanche,
Latouche, and Viallon 2012; Li, Greene, and Hu 2018; Kamarudin, Cox, and Kolamunnage-
Dona 2017) with no clear consensus on how and when these measures should be used. The
primary advantage of these measures is to extend discrimination metrics to be time-dependent.
However, it is unclear how to interpret a threshold of a linear predictor and moreover if this
is even the ‘correct’ quantity to threshold, especially when survival distribution predictions
are the more natural object to evaluate over time.
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Calibration measures evaluate the ‘average’ quality of survival distribution predictions. This
chapter is kept relatively short as the literature in this area is scarce (Rahman et al. 2017),
this is likely due to the meaning of calibration being unclear in a survival context (Van
Houwelingen 2000). However the meaning of calibration is better specified once specific
metrics are introduced. As with other measure classes, only measures that can generalise
beyond Cox PH models are included here but note that several calibration measures for
re-calibrating PH models have been discussed in the literature (Demler, Paynter, and Cook
2015; Van Houwelingen 2000).

Calibration measures can be grouped (Andres et al. 2018) into those that evaluate distri-
butions at a single time-point, ‘1-Calibration’ or ‘Point Calibration’ measures, and those
that evaluate distributions at all time-points ‘distributional-calibration’ or ‘probabilistic
calibration’ measures. A point-calibration measure will evaluate a function of the predicted
distribution at a single time-point whereas a probabilistic measure evaluates the distribution
over a range of time-points; in both cases the evaluated quantity is compared to the observed
outcome, (t, δ).

9.1 Point Calibration
Point calibration measures can be further divided into metrics that evaluate calibration at a
single time-point (by reduction) and measures that evaluate an entire distribution by only
considering the event time. The difference may sound subtle but it affects conclusions that
can be drawn. In the first case, a calibration measure can only draw conclusions at that
one time-point, whereas the second case can draw conclusions about the calibration of the
entire distribution. This is the same caveat as using prediction error curves for scoring rules
(Section 10.3).
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9.1.1 Calibration by Reduction
Point calibration measures are implicitly reduction methods as they use classification methods
to evaluate a full distribution based on a single point only (Chapter 19). For example, given
a predicted survival function Ŝ, one could calculate the survival function at a single time
point, Ŝτ and then use probabilistic classification calibration measures. Using this approach
one may employ common calibration methods such as the Hosmer–Lemeshow test (Hosmer
and Lemeshow 1980). Measuring calibration in this way can have significant drawbacks as a
model may be well-calibrated at one time-point but poorly calibrated at all others (Haider
et al. 2020). To mitigate this, one could perform the Hosmer–Lemeshow test (or other
applicable tests) multiple times with multiple testing correction at many (or all possible)
time points, however this would be less efficient and more difficult to interpret than other
measures discussed in this chapter.

9.1.2 Houwelingen’s α

As opposed to evaluating distributions at one or more arbitrary time points, one could
instead evaluate distribution predictions at meaningful times. van Houwelingen proposed
several measures (Van Houwelingen 2000) for calibration but only one generalises to all
probabilistic survival models, termed here ‘Houwelingen’s α’. The measure assesses if the
model correctly estimates the theoretical ‘true’ cumulative hazard function of the underlying
data generating process, H = Ĥ.

The statistic is derived by noting the closely related nature of survival analysis and counting
processes, and exploiting the fact that the sum of the cumulative hazard function is an
estimate for the number of events in a given time-period (Hosmer Jr, Lemeshow, and
May 2011). As this result may seem surprising, below is a short experiment using R that
demonstrates how the sum of the cumulative hazard estimated by a Kaplan-Meier estimator
is identical to the number of randomly simulated deaths in a dataset:

set.seed(42)
library(survival)

event = rbinom(100, 1, 0.7)
times = runif(100)
H = survfit(Surv(times, event) ~ 1)$cumhaz
c("Deaths" = sum(event), "Sum H" = sum(H))

#> Deaths Sum H
#> 66 66

Houwelingen’s α is then defined by substituting H for the observed total number of deaths
and summing over all predictions:

Hα(δ, Ĥ, t) =
∑

i δi∑
i Ĥi(ti)

with standard error SE(Hα) = exp(1/
√∑

i δi). A model is well-calibrated with respect to
Hα if Hα = 1.

The next metrics we look at evaluate models across a spectrum of points to assess calibration
over time.
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9.2 Probabilistic Calibration
Calibration over a range of time points may be assessed quantitatively or qualitatively,
with graphical methods often favoured. Graphical methods compare the average predicted
distribution to the expected distribution, which can be estimated with the Kaplan-Meier
curve, discussed next.

9.2.1 Kaplan-Meier Comparison
The simplest graphical comparison compares the average predicted survival curve to the
Kaplan-Meier curve estimated on the testing data. Let Ŝ1, ..., Ŝm be predicted survival
functions, then the average predicted survival function is the mixture: ¯̂

S = 1
m

∑m
i=1 Ŝi(τ).

This estimate can be plotted next to the Kaplan-Meier estimate of the survival distribution in
a test dataset (i.e., the true data for model evaluation), allowing for visual comparison of how
closely these curves align. An example is given in Figure 9.1, a Cox model (CPH), random
survival forest, and relative risk tree, are all compared to the Kaplan-Meier estimator. This
figure highlights the advantages and disadvantages of this method. The relative risk tree is
clearly poorly calibrated as it increasingly diverges from the Kaplan-Meier. In contrast, the
Cox model and random forest cannot be directly compared to one another, as both models
frequently overlap with each other and the Kaplan-Meier estimator. Hence it is possible to
say that the Cox and forests models are better calibrated than the risk tree, however it is
not possible to say which of those two is better calibrated and whether their distance from
the Kaplan-Meier is significant or not at a given time (when not clearly overlapping).

Figure 9.1: Comparing the calibration of a Cox PH (CPH), random forest (RF), and relative
risk tree (RRT) to the Kaplan-Meier estimate of the survival function calculated on a test
set. The calibration of RRT notably decreases over time whereas RF and CPH are closer to
the Kaplan-Meier curve.

This method is useful for making broad statements such as “model X is clearly better
calibrated than model Y” or “model X appears to make average predictions close to the
Kaplan-Meier estimate”, but that is the limit in terms of useful conclusions. One could refine
this method for more fine-grained information by instead using relative risk predictions
to create ‘risk groups’ that can be plotted against a stratified Kaplan-Meier, however this
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method is harder to interpret and adds even more subjectivity around how many risk groups
to create and how to create them (Patrick Royston and Altman 2013). The next measure
we consider includes a graphical method as well as a quantitative interpretation.

9.2.2 D-Calibration
D-Calibration (Andres et al. 2018; Haider et al. 2020) evaluates a model’s calibration by
assessing if the predicted survival distributions follow the Uniform distribution as expected,
which is motivated by the result that for any random variable X it follows SX(x) ∼ U(0, 1).
This can be tested using a χ2 test-statistic:

χ2 :=
n∑

i=1

(Oi − Ei)2

Ei

where O1, ..., On is the observed number of events in n groups and E1, ..., En is the expected
number of events.

To utilise this test, the [0, 1] codomain of Si is cut into B disjoint contiguous intervals (‘bins’)
over the full range [0, 1]. Let m be the total number of observations, then assuming a discrete
uniform distribution as the theoretical distribution, the expected number of events in each
bin is Ei = m/B (as the probability of an observation falling into each bin is equal).

The observations in the ith bin, bi, are defined by the set:

bi := {j = 1, . . . , m : ⌈Ŝi(tj)B⌉ = i}

where j = 1, . . . , m are the indices of the observations, Ŝi are observed (i.e., predicted)
survival functions, ti are observed (i.e., the ground truth) outcome times, and ⌈·⌉ is the
ceiling function. The observed number of events in bi is then the number of observations in
that set: Oi = |bi|.

The D-Calibration measure, or χ2 statistic, is now defined by,

Dχ2(Ŝ, t) :=
∑B

i=1(Oi − m
B )2

m/B

where Ŝ = (Ŝ1 Ŝ2 · · · Ŝm)⊤ and t = (t1 t2 · · · tm)⊤.

This measure has several useful properties. Firstly, one can test the null hypothesis that a
model is ‘D-calibrated’ by deriving a p-value from comparison to χ2

B−1. Secondly, Dχ2 tends
to zero as a model is increasingly well-calibrated, hence the measure can be used for model
comparison. Finally, the theory lends itself to an intuitive graphical calibration method as a
D-calibrated model implies:

p =
∑

i I(Ti ≤ F̂ −1
i (p))

m

where p is some value in [0, 1], F̂ −1
i is the ith predicted inverse cumulative distribution

function, and m is again the number of observations. In words, the number of events occurring
at or before each quantile should be equal to the quantile itself, for example 50% of events
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should occur before their predicted median survival time. Therefore, one can plot p on the
x-axis and the right hand side of the above equation on the y-axis. A D-calibrated model
should result in a straight line on x = y. This is visualised in Figure 9.2 for the same models
as in Figure 9.1. This figure supports the previous findings that the relative risk tree is poorly
calibrated in contrast to the Cox model and random forest but again no direct comparison
between the latter models is possible.

Figure 9.2: Comparing the D-calibration of a Cox PH (CPH), random forest (RF), and
relative risk tree (RRT) to the expected distribution on y=x. As with Figure 9.1, the relative
risk tree is clearly not D-calibrated (as supported by the figures in the bottom-right). The
CPH and RF are closer to the y=x however neither follow it perfectly.

Whilst D-calibration has the same problems as the Kaplan-Meier method with respect to
visual comparison, at least in this case there are quantities to help draw more concrete
solutions. For the models in Figure 9.2, it is clear that the relative risk tree is not D-calibrated
with p < 0.01 indicating the null hypothesis of D-calibration, i.e., the predicted quantiles
not following a Discrete Uniform distribution, can be comfortably rejected. Whilst the
D-calibration for the Cox model is smaller than that of the random forest, the difference is
unlikely to be significant, as is seen in the overlapping curves in the figure.

The next chapter will look at scoring rules, which provides a more concrete method to
analytically compare the predicted distributions from survival models.
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Scoring rules evaluate probabilistic predictions and (attempt to) measure the overall pre-
dictive ability of a model in terms of both calibration and discrimination (Gneiting and
Raftery 2007; Murphy 1973). In contrast to calibration measures, which assess the average
performance across all observations on a population level, scoring rules evaluate the sample
mean of individual predictions across all observations in a test set. As well as being able to
provide information at an individual level, scoring rules are also popular as probabilistic
forecasts are widely recognised to be superior to deterministic predictions for capturing
uncertainty in predictions (A. P. Dawid 1984; A. Philip Dawid 1986). Formalisation and
development of scoring rules has primarily been due to Dawid (A. P. Dawid 1984; A. Philip
Dawid 1986; A. Philip Dawid and Musio 2014) and Gneiting and Raftery (Gneiting and
Raftery 2007); though the earliest measures promoting “rational” and “honest” decision
making date back to the 1950s (Brier 1950; Good 1952). Few scoring rules have been proposed
in survival analysis, although the past few years have seen an increase in popularity in these
measures. Before delving into these measures, we will first describe scoring rules in the
simpler classification setting.

Scoring rules are pointwise losses, which means a loss is calculated for all observations and
the sample mean is taken as the final score. To simplify notation, we only discuss scoring
rules in the context of a single observation where Li(Ŝi, ti, δi) would be the loss calculated for
some observation i where Ŝi is the predicted survival function (from which other distribution
functions can be derived), and (ti, δi) is the observed survival outcome.

10.1 Classification Losses
In the simplest terms, a scoring rule compares two values and assigns them a score (hence
‘scoring rule’), formally we’d write L : R× R 7→ R̄. In machine learning, this usually means
comparing a prediction for an observation to the ground truth, so L : R × P 7→ R̄ where
P is a set of distributions. Crucially, scoring rules usually refer to comparisons of true and
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predicted distributions. As an example, take the Brier score (Brier 1950) defined by:

LBrier(p̂i, yi) = (yi − p̂i(yi))2

This scoring rule compares the ground truth to the predicted probability distribution by
testing if the difference between the observed event and the truth is minimized. This is
intuitive as if the event occurs and yi = 1, then p̂i(yi) should be as close to one as possible
to minimize the loss. On the other hand, if yi = 0 then the better prediction would be
p̂i(yi) = 0.

This demonstrates an important property of the scoring rule, properness. A loss is proper,
if it is minimized by the correct prediction. In contrast, the loss Limproper(p̂i, yi) = 1 −
LBrier(p̂i, yi) is still a scoring rule as it compares the ground truth to the prediction
probability distribution, but it is clearly improper as the perfect prediction (p̂i(yi) = yi)
would result in a score of 1 whereas the worst prediction would result in a score or 0. Proper
losses provide a method of model comparison as, by definition, predictions closest to the
true distribution will result in lower expected losses.

Another important property is strict properness. A loss is strictly proper if the loss is uniquely
minimized by the ‘correct’ prediction. Consider now the loss L0(p̂i, yi) = 0. Not only is
this a strictly proper scoring rule but it is also proper. The loss can only take the value 0
and is therefore guaranteed to be minimized by the correct prediction. It is clear however
that this loss is useless. In contrast, the Brier score is minimized by only one value, which
is the optimal prediction (Figure 10.1). Strictly proper losses are particular important for
automated model optimisation, as minimization of the loss will result in the ‘optimum score
estimator based on the scoring rule’ (Gneiting and Raftery 2007).

Mathematically, a classification loss L : P × Y → R̄ is proper if for any distributions pY , p
in P and for any random variables Y ∼ pY , it holds that E[L(pY , Y )] ≤ E[L(p, Y )]. The loss
is strictly proper if, in addition, p = pY uniquely minimizes the loss.

As well as the Brier score, which was defined above, another widely used loss is the log loss
(Good 1952), defined by

Llogloss(p̂i, yi) = − log p̂i(yi)

These losses are visualised in Figure 10.1, which highlights that both losses are strictly
proper (A. Philip Dawid and Musio 2014) as they are minimized when the true prediction is
made, and converge to the minimum as predictions are increasingly improved.

10.2 Survival Losses
Analogously to classification losses, a survival loss L : P × R>0 × {0, 1} → R̄ is proper if
for any distributions pY , p in P, and for any random variables Y ∼ pY , and C t.v.i. R>0;
with T := min(Y, C) and ∆ := I(T = Y ); it holds that, E[L(pY , T, ∆)] ≤ E[L(p, T, ∆)]. The
loss is strictly proper if, in addition, p = pY uniquely minimizes the loss. A survival loss is
referred to as outcome-independent (strictly) proper if it is only (strictly) proper when C
and Y are independent.
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Figure 10.1: Brier and log loss scoring rules for a binary outcome and varying probabilistic
predictions. x-axis is a probabilistic prediction in [0, 1], y-axis is Brier score (left) and log
loss (right). Blue lines are varying Brier score/log loss over different predicted probabilities
when the true outcome is 1. Red lines are varying Brier score/log loss over different predicted
probabilities when the true outcome is 0. Both losses are minimized when p̂i(yi) = yi.

With these definitions, the rest of this chapter lists common scoring rules in survival analysis
and discusses some of their properties. As with other chapters, this list is likely not exhaustive
but will cover commonly used losses.

10.2.1 Integrated Graf Score
The Integrated Graf Score (IGS) was introduced by Graf (Graf and Schumacher 1995; Graf
et al. 1999) as an analogue to the integrated brier score (IBS) in regression. It is likely the
commonly used scoring rule in survival analysis, possibly due to its intuitive interpretation.

The loss is defined by

LIGS(Ŝi, ti, δi|ĜKM ) =
∫ τ∗

0

Ŝ2
i (τ)I(ti ≤ τ, δi = 1)

ĜKM (ti)
+ F̂ 2

i (τ)I(ti > τ)
ĜKM (τ)

dτ (10.1)

where Ŝ2
i (τ) = (Ŝi(τ))2 and F̂ 2

i (τ) = (1− Ŝi(τ))2, and τ∗ ∈ R≥0 is an upper threshold to
compute the loss up to, and ĜKM is the Kaplan-Meier trained on the censoring distribution
for IPCW (Section 8.1).

At first glance this might seem intimidating but it is worth taking the time to understand the
intuition behind the loss. Recall the classification Brier score, L(p̂i, yi) = (yi − p̂i(y))2, this
provides a method to compare and evaluate a probability mass function at one time-point.
The integrated Brier score (IBS), also known as the CRPS, is the integral of the Brier score
for all real-valued thresholds (Gneiting and Raftery 2007) and hence allows predictions to
be evaluated over multiple points as L(F̂i, yi) =

∫
(F̂i(yi) − I(yi ≥ x))2dy where F̂i is the

predicted cumulative distribution function and x is some meaningful threshold. In survival
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analysis, F̂i(τ) represents the probability of an observation having experienced the event at
or before τ , and the ground truth to compare to is therefore whether the observation has
actually experienced the event at τ , which is the case when ti ≤ τ . Hence the IBS becomes
L(F̂i, ti) =

∫
(F̂i(τ)− I(ti ≤ τ))2dτ . Now for a given time τ :

L(F̂i, t) =
{

(F̂i(τ)− 1)2 = (1− F̂i(τ)2) = Ŝ2
i (τ), if ti ≤ τ

(F̂i(τ)− 0)2 = F̂ 2
i (τ), if ti > τ

(10.2)

In words, if an observation has not yet experienced an outcome (ti > τ) then the loss is
minimized when the cumulative distribution function (the probability of having already
died) is 0, which is intuitive as the optimal prediction is correctly identifying the observation
has yet to experience the event. In contrast, if the observation has experienced the outcome
(ti ≤ τ) then the loss is minimized when the survival function (the probability of surviving
until τ) is 0, which follows from similar logic.

The final component of the Graf score is accommodating for censoring. At τ an observation
will either have

1. Not experienced the event: I(ti > τ);
2. Experienced the event: I(ti ≤ τ, δi = 1); or
3. Been censored: I(ti ≤ τ, δi = 0)

In the Graf score, censored observations are discarded. If they were not then Equation 10.2
would imply their contribution would be treated the same as those who had experienced
the event. However this assumption would be entirely wrong as a censored observation is
guaranteed not to have experienced the event, hence an ideal prediction for a censored
observation is a high survival probability up until the point of censoring, at which time
comparison to ground truth is unknown as this is no longer observed.

The act of discarding censored observations means that the sample size decreases over time.
To compensate for this, IPCW is used to increasingly weight predictions as τ increases.
Hence, IPCW weights, Wi are defined such that

Wi =
{

Ĝ−1
KM (ti), if I(ti ≤ τ, δi = 1)

Ĝ−1
KM (τ), if I(ti > τ)

The weights total 1 when divided over all samples and summed (Graf et al. 1999). They
are also intuitive as observations are either weighted by G(τ) when they are still alive and
therefore still part of the sample, or by G(ti) otherwise.

As well as being intuitive, when censoring is uninformative, the Graf score consistently
estimates the mean square error L(t, S|τ∗) =

∫ τ∗

0 [I(t > τ) − S(τ)]2dτ , where S is the
correctly specified survival function (Gerds and Schumacher 2006). However, despite these
promising properties, the IGS is improper and must therefore be used with care (Rindt et
al. 2022; R. Sonabend et al. 2024). In practice, experiments have shown that the effect of
improperness is minimal and therefore this loss should be avoided for automated routines
such as model tuning, however it can still be used for model evaluation. In addition, a small
adaptation of the loss results in a strictly proper scoring rule simply by altering the weights
such that Wi = Ĝ−1

KM (ti) for all uncensored observations and 0 otherwise (R. Sonabend et
al. 2024), resulting in the reweighted Graf score:
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LRGS(Ŝi, ti, δi|ĜKM ) = δiI(ti ≤ τ∗)
∫ τ∗

0

(I(ti ≤ τ)− F̂i(τ))2

ĜKM (ti)
dτ

The addition of I(ti ≤ τ∗) completely removes observations that experience the event after
the cutoff time, τ∗, this ensures there are no cases where the G(ti) weighting is calculated
on time after the cutoff. Including an upper threshold (i.e, τ∗ <∞) effects properness and
generalization statements. For example, by evaluating a model using the RGS with a τ∗

threshold, then the model may be said to only perform well up until τ∗ with its performance
unknown after this time.

The change of weighting slightly alters the interpretation of the contributions at different
time-points. By example, let (ti = 4, tj = 5) be two observed survival times, then at τ = 3,
the Graf score weighting would be Ĝ−1

KM (4) for both observations, whereas the RGS weights
would be (KMG−1(4), KMG−1(5)) respectively, hence there is always more ‘importance’
placed on observations that take longer to experience the event. In practice, the difference
between these weights appears to be minimal (R. Sonabend et al. 2024) but as RGS is
strictly proper, it is more suitable for automated experiments.

10.2.2 Integrated Survival Log Loss
The integrated survival log loss (ISLL) was also proposed by Graf et al. (1999).

LISLL(Ŝi, ti, δi|ĜKM ) = −
∫ τ∗

0

log[F̂i(τ)]I(ti ≤ τ, δi = 1)
ĜKM (ti)

+ log[Ŝi(τ)]I(ti > τ)
ĜKM (τ)

dτ

where τ∗ ∈ R>0 is an upper threshold to compute the loss up to.

Similarly to the IGS, there are three ways to contribute to the loss depending on whether
an observation is censored, experienced the event, or alive, at τ . Whilst the IGS is routinely
used in practice, there is no evidence that ISLL is used, and moreover there are no proofs
(or claims) that it is proper.

The reweighted ISLL (RISLL) follows similarly to the RIGS and is also outcome-independent
strictly proper (R. Sonabend et al. 2024).

LRISLL(Ŝi, ti, δi|ĜKM ) = −δiI(ti ≤ τ∗)
∫ τ∗

0

I(ti ≤ τ) log[F̂i(τ)] + I(ti > τ) log[Ŝi(τ)] dτ

ĜKM (ti)

10.2.3 Survival density log loss
Another outcome-independent strictly proper scoring rule is the survival density log loss
(SDLL) (R. Sonabend et al. 2024), which is given by

LSDLL(f̂i, ti, δi|ĜKM ) = −δi log[f̂i(ti)]
ĜKM (ti)

where f̂i is the predicted probability density function. This loss is essentially the classification
log loss (− log(p̂i(ti))) with added IPCW. Whilst the classification log loss has beneficial
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properties such as being differentiable, this is more complex for the SDLL and it is not
widely used in practice. A useful alternative to the SDLL which can be readily used in
automated procedures is the right-censored log loss.

10.2.4 Right-censored log loss
The right-censored log loss (RCLL) is an outcome-independent strictly proper scoring rule
(Avati et al. 2020) that benefits from not depending on IPCW in its construction. The RCLL
is defined by

LRCLL(Ŝi, ti, δi) = − log[δif̂i(ti) + (1− δi)Ŝi(ti)]

This loss is interpretable when we break it down into its two halves:

1. If an observation is censored at ti then all the information we have is that they did
not experience the event at the time, so they must be ‘alive’, hence the optimal
value is Ŝi(ti) = 1 (which becomes −log(1) = 0).

2. If an observation experiences the event then the ‘best’ prediction is for the
probability of the event at that time to be maximised, as pdfs are not upper-
bounded this means f̂i(ti) =∞ (and −log(ti)→∞ as ti →∞).

10.2.5 Absolute Survival Loss
The absolute survival loss, developed over time by Schemper and Henderson (2000) and
Schmid et al. (2011), is based on the mean absolute error is very similar to the IGS but
removes the squared term:

LASL(Ŝi, ti, δi|ĜKM ) =
∫ τ∗

0

Ŝi(τ)I(ti ≤ τ, δi = 1)
ĜKM (ti)

+ F̂i(τ)I(ti > τ)
ĜKM (τ)

dτ

where ĜKM and τ∗ are as defined above. Analogously to the IGS, the ASL score consistently
estimates the mean absolute error when censoring is uninformative (Schmid et al. 2011) but
there are also no proofs or claims of properness. The ASL and IGS tend to yield similar
results (Schmid et al. 2011) but in practice there is no evidence of the ASL being widely
used.

10.3 Prediction Error Curves
As well as evaluating probabilistic outcomes with integrated scoring rules, non-integrated
scoring rules can be utilised for evaluating distributions at a single point. For example,
instead of evaluating a probabilistic prediction with the IGS over R≥0, instead one could
compute the IGS at a single time-point, τ ∈ R≥0, only. Plotting these for varying values of
τ results in ‘prediction error curves’ (PECs), which provide a simple visualisation for how
predictions vary over the outcome. PECs are especially useful for survival predictions as they
can visualise the prediction ‘over time’. PECs are mostly used as a graphical guide when
comparing few models, rather than as a formal tool for model comparison. An example for
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PECs is provided in Figure 10.2 for the IGS where the the Cox PH consistently outperforms
the SVM.

Figure 10.2: Prediction error curves for the CPH and SVM models from Chapter 9. x-axis
is time and y-axis is the IGS computed at different time-points. The CPH (red) performs
better than the SVM (blue) as it scores consistently lower. Trained and tested on randomly
simulated data from $mlr3proba.

10.4 Baselines and ERV
A common criticism of scoring rules is a lack of interpretability, for example, an IGS of 0.5
or 0.0005 has no meaning by itself, so below we present two methods to help overcome this
problem.

The first method, is to make use of baselines for model comparison, which are models or
values that can be utilised to provide a reference for a loss, they provide a universal method
to judge all models of the same class by (Gressmann et al. 2018). In classification, it is
possible to derive analytical baseline values, for example a Brier score is considered ‘good’ if
it is below 0.25 or a log loss if it is below 0.693 (Figure 10.1), this is because these are the
values obtained if you always predicted probabilties as 0.5, which is a reasonable basline
guess in a binary classificaiton problem. In survival analysis, simple analytical expressions
are not possible as losses are dependent on the unknown distributions of both the survival
and censoring time. Therefore all experiments in survival analysis must include a baseline
model that can produce a reference value in order to derive meaningful results. A suitable
baseline model is the Kaplan-Meier estimator (Graf and Schumacher 1995; Lawless and Yuan
2010; Patrick Royston and Altman 2013), which is the simplest model that can consistently
estimate the true survival function.

As well as directly comparing losses from a ‘sophisticated’ model to a baseline, one can
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also compute the percentage increase in performance between the sophisicated and baseline
models, which produces a measure of explained residual variation (ERV) (Edward L. Korn
and Simon 1990; Edward L. Korn and Simon 1991). For any survival loss L, the ERV is,

RL(S, B) = 1− L|S
L|B

where L|S and L|B is the loss computed with respect to predictions from the sophisticated
and baseline models respectively.

The ERV interpretation makes reporting of scoring rules easier within and between exper-
iments. For example, say in experiment A we have L|S = 0.004 and L|B = 0.006, and in
experiment B we have L|S = 4 and L|B = 6. The sophisticated model may appear worse at
first glance in experiment A (as the losses are very close) but when considering the ERV we
see that the performance increase is identical (both RL = 33%), thus providing a clearer
way to compare models.

10.5 Conclusion

Key takeaways

• Scoring rules are a useful tool for measuring a model’s overall predictive ability,
taking into account calibration and discrimination.

• Strictly proper scoring rules allow models to be compared to one another, which is
important when choosing models in a benchmark experiment.

• Many scoring rules for censored data are not strictly proper, however experiments
suggest that improper rules still provide useful and trustworthy results (R. Sonabend
et al. 2024)

Limitations

• Scoring rules can be difficult to interpret but ERV representations can be a helpful
way to overcome this.

• There is no consensus about which scoring rule to use and when so in practice
multiple scoring rules may have to be reported in experiments to ensure transparency
and fairness of results.

• For non- and semi-parametric survival models that return distribution predictions,
estimates of f(t) are not readily available and require approximations (Rindt et al.
2022), hence measures such as RCLL and SDLL can often not be directly used in
practice.

Further reading

• A. Philip Dawid and Musio (2014) and Gneiting and Raftery (2007) provide a
comprehensive summary of scoring rules in regression and classification settings.

• Rindt et al. (2022) and R. Sonabend et al. (2024) review survival scoring rules.
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• Rahman et al. (2017) compare measures for external validation including some
scoring rules.
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When it comes to evaluating survival time predictions, there are few measures available
at our disposal. As a result of survival time predictions being uncommon compared to
other prediction types (?@sec-surv-set-types), there are limited survival time evaluation
measures in the literature. To our knowledge, there are no specialised ‘survival time measures’,
instead regression measures are used by ignoring censored observations.

Before presenting these measures, consider what happens when censored observations are
discarded. If censoring is truly independent, occurs randomly, and is very limited in the data,
then there is little harm in discarding observations and treating this as a regression problem.
However, if censoring is not independent, then discarding censored observations will lead to
missing valuable insights about the model. For example, say the task of interest is to predict
the probability of death due to kidney failure and patients are censored if they receive a
transplant - this is clearly a competing risk as receiving a transplant greatly reduces the
probability of death. If one were to predict the time to death for all patients and to not
evaluate the quality of prediction for censored patients, then it would only be possible to
conclude about the model’s performance for those who do not receive a transplant. On the
surface this may appear to be of value, however, if at the time of prediction it is impossible to
know who will receive a transplant (perhaps because the dataset omits relevant information
such as time of hospital admission, wait on register, etc.), then for a given prediction for
an observation, it would be impossible to know if the prediction is trustworthy - it would
be if that patient does not receive a transplant, but would not be if they do not. In short,
it is essential that predictions for individuals who end up being censored, are as good as
those who are not, simply because there is no method to know which group observations
will eventually fall into.

It is interesting to consider if IPCW strategies would compensate for this deficiency, however
as we were unable to find research into this method, we have only included measures that
we term ‘censoring-ignored regression measures’, which are presented in (P. Wang, Li, and
Reddy 2019).
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11.1 Distance measures
Survival time measures are often referred to as ‘distance’ measures as they measure the
distance between the true, (t, δ = 1), and predicted, t̂, values. These are presented in turn
with brief descriptions of their interpretation.

Censoring-ignored mean absolute error, MAEC

In regression, the mean absolute error (MAE) is a popular measure because it is intuitive
to understand as it measures the absolute difference between true and predicted outcomes;
hence intuitively one can understand that a model predicting a height of 175cm is clearly
better than one predicting a height of 180cm, for a person with true height of 174cm.

MAEC(t̂, t, δ) = 1
d

m∑
i=1

δi|ti − t̂i|

Where d is the number of uncensored observations in the dataset, d =
∑

i δi.

Censoring-ignored mean squared error

In comparison to MAE, the mean squared error (MSE), computes the squared differences
between true and predicted values. While the MAE provides a smooth, linear, ‘penalty’ for
increasingly poor predictions (i.e., the difference between an error of predicting 2 vs. 5 is
still 3), but the square in the MSE means that larger errors are quickly magnified (so the
difference in the above example is 9). By taking the mean over all predictions, the effect of
this inflation is to increase the MSE value as larger mistakes are made.

MSEC(t̂, t, δ) = 1
d

m∑
i=1

δi(ti − t̂i)2

Where d is again the number of uncensored observations in the dataset, d =
∑

i δi.

Censoring-adjusted root mean squared error

Finally, the root mean squared error (RMSE), is simply the square root of the MSE. This
allows interpretation on the original scale (as opposed to the squared scale produced by the
MSE). Given the inflation effect for the MSE, the RMSE will be larger than the MAE as
increasingly poor predictions are made; it is common practice for the MAE and RMSE to
be reported together.

RMSEC(t̂, t, δ) =
√

MSEC(t̂, t, δ)

11.2 Over- and under-predictions
All of these distance measures assume that the error for an over-prediction (t̂ > t) should
be equal to an under-prediction (t̂ < t), i.e., that it is ‘as bad’ if a model predicts an
outcome time being 10 years longer than the truth compared to being 10 years shorter. In
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the survival setting, this assumption is often invalid as it is generally preferred for models
to be overly cautious, hence to predict negative events to happen sooner (e.g., predict a
life-support machine fails after three years not five if the truth is actually four) and to
predict positive events to happen later (e.g., predict a patient recovers after four years not
two if the truth is actually three). A simple method to incorporate this imbalance between
over- and under-predictions is to add a weighting factor to any of the above measures, for
example the MAEC might become

MAEC(t̂, t, δ, λ, µ, ϕ) = 1
d

m∑
i=1

δi|(ti − t̂i)[λI(ti > t̂i) + µI(ti < t̂i) + ϕI(ti = t̂i)]|

where λ, µ, ϕ are any Real number to be used to weight over-, under-, and exact-predictions,
and d is as above. The choice of these are highly context dependent and could even be tuned.
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After reading this part of the book, evaluating survival analysis models may appear more
daunting than regression and classification settings, which, in contrast, have fewer (common)
measures to choose from. In regression problems, the RMSE and MAE are common choices
for evaluating how far predictions are from the truth. In classification, the Brier score
or logloss may be used to evaluate probabilistic predictions and the accuracy score or
TPR/TNR/FPR/FNR are common for deterministic predictions. In contrast, there are
many more measures in survival analysis which are necessarily more complex, due to the
need to handle censoring with many possible methods for doing so. Therefore, this final
chapter aims to provide some simple to follow guidelines for selecting measures for different
types of experiments.

12.1 Defining the experiment
Experiments may be performed to make predictions for new data, compare the performance
of multiple models (‘benchmark experiments’), investigate patterns in observed data, or
some combination of these. Each experiment requires different choices of measures, with
different levels of strictness applied to measure assumptions.

12.1.1 Predictive experiments
In the real world, predictive experiments are most common. These are now daily occurrences
as machine learning models are routinely deployed on servers to make ongoing predictions.
In these cases, the exact task must be precisely stated before any model is deployed and
evaluated. Common survival problems to solve include:

1. Identifying low and high risk groups in new data (for resource allocation);
2. Predicting the survival distribution for an individual over time; and
3. Predicting the survival probability for an individual at a specific time.
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The first of these is a discrimination problem and it is therefore most important that
the model optimises corresponding measures and that measure assumptions are justified.
However, even this task may be more complex than it initially seems. For example, while some
papers have shown flaws in Harrell’s C (Gönen and Heller 2005; Rahman et al. 2017; Schmid
and Potapov 2012; Uno et al. 2007), others have demonstrated that common alternatives
yield very similar results (Rahman et al. 2017; Therneau and Atkinson 2020) and moreover
some prominent alternatives may be harder to interpret due to high variance (Rahman
et al. 2017; Schmid and Potapov 2012). In predictive experiment that may require more
level of automation, it is important to be careful of C-hacking (Section 8.1.2) and to avoid
overoptimistic results. Hence one should not compute a range of concordance indices and
report the maximum but instead calculate a single discrimination measure and then establish
a pre-defined threshold to determine if the deployed model is optimal, a natural threshold
would be 0.5 as anything above this is better than a baseline model. Given Harrell’s C to be
increasingly over-optimistic with additional censoring (Rahman et al. 2017), it is advisable
to use Uno’s C instead.

If the task of interest is to predict survival distributions over time, then the choice of measure
is more limited and only the RCLL and the proper Graf score are recommended. Both these
measures can only be interpreted with respect to a baseline so use of the ERV representation
is strongly recommended. As with the previous task, establishing a threshold for performance
is essential prior to deployment and for ongoing evaluation. It is less clear in these cases
what this threshold might be, but the simplest starting point would be to ensure that the
model continues to outperform the baseline or a simpler gold-standard model (e.g., the Cox
PH).

The final task of interest differs from the previous by only making predictions at a specific
time. In this case, prediction error curves, and single-time point calibration measures can be
used, as well as scoring rules with shorter cut-offs (i.e., the upper limit of the integral). It is
imperative that model performance is never extrapolated outside of the pre-specified time.

12.1.2 Benchmark experiments
When conducting benchmark experiments, it is advisable to use a spread of measures so
that results can be compared across various properties. In this case, models should be tested
against discrimination, calibration, and overall predictive ability (i.e., with scoring rules). As
models make different types of predictions, results from these experiments should be limited
to metrics that are directly comparable, in other words, two models should only be compared
based on the same metric. In benchmark experiments, models are compared across the same
data and same resampling strategy, hence measure assumptions become less important as
they are equally valid or flawed for all models. For example, if one dataset has particularly
high amounts of censoring leading to an artificially higher concordance index, then this bias
would affect all models equally and the overall experiment would not be affected. Hence, in
these experiments it suffices to pick one or two measures for concordance, discrimination,
and predictive ability, without having to be overly concerned with the individual metric.

This book recommends using Harrell’s C and Uno’s C for concordance as these are simplest
to compute and including both enables more confidence in model comparison, i.e., if a model
outperforms another with respect to both these measures then there can be higher confidence
in drawing statements about the model’s discriminatory power. For calibration, D-calibration
is recommended as it can be meaningfully compared between models, and the RCLL is
recommended for a scoring rule (which is proper for outcome-independent censoring). No
distance measure is recommended as these do not apply to the vast majority of models. All
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these measures can be used for automated tuning, in the case of discrimination tuning to
Harrell’s C alone should suffice (without also tuning to Uno’s C).

12.1.3 Investigation
Investigating patterns in observed data is increasingly common as model interpretability
methods have become more accessible (Molnar 2019). Before data can be investigated, any
model that is trained on the data must first be demonstrated to be a good fit to the data. A
model’s fit to data can also be evaluated by resampling the data (Chapter 3) and evaluating
the predictions. In this case, it is important to choose measures that are interpretable and
have justified assumptions. Calibration measures are particularly useful for evaluating if a
model is well fit to data, and any of the methods described in Chapter 9 are recommended
for this purpose. Discrimination measures may be useful, however, given how susceptible
they are to censoring, they can be difficult to interpret on their own, and the same is true
for scoring rules. One method to resolve ambiguity is to perform a benchmark experiment of
multiple models on the same data (ideally with some automated tuning) and then select
the best model from this experiment and refit it on the full data (Becker, Schneider, and
Fischer 2024) – this is a robust, empirical method that demonstrates a clear trail to selecting
a model that outperforms other potential candidates. When investigating a dataset, one
may also consider using different measures to assess algorithmic fairness (R. Sonabend et al.
2022), any measure that can be optimised (i.e., where the lowest or highest value is the best)
may be used in this case. Finally, there are survival adaptations to the well-known AIC
(Liang and Zou 2008) and BIC (Volinsky and Raftery 2000) however as these are generally
only applicable to ‘classical’ models (Chapter 13), they are out of scope for this book and
hence have not been discussed.

12.2 Conclusions
This part of the book focused on survival measures. Measures may be used to evaluate model
predictions, to tune a model, or to train a model (e.g., in boosting or neural networks).
Unlike other settings, there are many different choices of survival measures and it can be
hard to determine which to use and when. In practice, like many areas of Statistics, the most
important factor is to clearly define any experiment upfront and to be clear about which
measures will be used and why. As a rule of thumb, good choices for measures are Harrell’s C
for evaluating discrimination, with Uno’s C supporting findings, D-calibration for calibration,
and the RCLL for evaluating overall predictive ability from distribution predictions. Finally,
if you are restricted to a single measure choice (e.g., for automated tuning or continuous
evaluation of deployed models), then we recommended selecting a scoring rule such as RCLL
which captures information about calibration and discrimination simultaneously.
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13.1 A Review of Classical Survival Models
This chapter provides a brief review of classical survival models before later chapters move on
to machine learning models. ‘Classical’ models are defined with a very narrow scope in this
book: low-complexity models that are either non-parametric or have parameters that can be
fit with maximum likelihood estimation (or an equivalent method). In contrast, ‘machine
learning’ (ML) models require more intensive model fitting procedures such as recursion or
iteration. The classical models in this paper are fast to fit and highly interpretable, though
can be inflexible and may make unreasonable assumptions. Whereas the ML models are more
flexible with hyper-parameters however are computationally more intensive (both in terms
of speed and storage), require tuning to produce ‘good’ results, and are often a ‘black-box’
with difficult interpretation.

As classical survival models have been studied extensively for decades, these are only discussed
briefly here, primarily these are of interest as many of these models will be seen to influence
machine learning extensions. The scope of the models discussed in this chapter is limited to
the general book scope (?@sec-surv-scope), i.e. single event with right-censoring and no
competing-risks, though in some cases these are discussed.

There are several possible taxonomies for categorising statistical models, these include:

• Parametrisation Type: One of non-, semi-, or fully-parametric. \ Non-parametric models
assume that the data distribution cannot be specified with a finite set of parameters. In
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contrast, fully-parametric models assume the distribution can be specified with a finite set
of parameters. Semi-parametric models are a hybrid of the two and are formed of a finite
set of parameters and an infinite-dimensional ‘nuisance’ parameter.

• Conditionality Type: One of unconditional or conditional. A conditional prediction is one
that makes use of covariates in order to condition the prediction on each observation.
Unconditional predictors, which are referred to below as ‘estimators’, ignore covariate data
and make the same prediction for all individuals.

• Prediction Type: One of ranking, survival time, or distribution (?@sec-surv-set-types).

Table 13.1 summarises the models discussed below into the taxonomies above for reference.
Note that the Cox model is listed as predicting a continuous ranking, and not a survival
distribution, which may appear inconsistent with other definitions. The reason for this is
elaborated upon in Chapter 19. Though the predict-type taxonomy is favoured throughout
this book, it is clearer to review classical models in increasing complexity, beginning with
unconditional estimators before moving onto semi-parametric continuous ranking predictions,
and finally conditional distribution predictors. The review is brief with mathematics limited
to the model fundamentals but not including methods for parameter estimation. Also
the review is limited to the ‘basic’ model specification and common extensions such as
regularization are not discussed though they do exist for many of these models.

All classical models are highly transparent and accessible, with decades of research and many
off-shelf implementations. Predictive performance of each model is briefly discussed as part
of the review and then again in (R. E. B. Sonabend 2021).

Table 13.1: Table of models discussed in this literature review, classified by parametrisation,
prediction type, and conditionality.

Model1 Parametrisation2 Prediction3 Conditionality
Kaplan-Meier Non Distr. Unconditional
Nelson-Aalen Non Distr. Unconditional
Akritas Non Distr. Conditional
Cox PH Semi Rank Conditional
Parametric PH Fully Distr. Conditional
Accelerated Failure Time Fully Distr. Conditional
Proportional Odds Fully Distr. Conditional
Flexible Spline Fully Distr. Conditional

* 1. All models are implemented in the R package survival (Therneau 2015) with the
exception of flexible splines, implemented in flexsurv (C. Jackson 2016), and the Akritas
estimator in survivalmodels (R. Sonabend 2020). * 2. Non = non-parametric, Semi =
semi-parametric, Fully = fully-parametric. * 3. Distr. = distribution, Rank = ranking.

13.1.1 Non-Parametric Distribution Estimators
Unconditional Estimators

Unconditional non-parametric survival models assume no distribution for survival times
and estimate the survival function using simple algorithms based on observed outcomes
and no covariate data. The two most common methods are the Kaplan-Meier estimator
(KaplanMeier1958?), which estimates the average survival function of a training dataset,
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and the Nelson-Aalen estimator (O. Aalen 1978; Nelson 1972), which estimates the average
cumulative hazard function of a training dataset.

The Kaplan-Meier estimator of the survival function is given by

ŜKM (τ |Dtrain) =
∏

t∈UO,t≤τ

(
1− dt

nt

)
(13.1)

As this estimate is so important in survival models, this book will always use the symbol
ŜKM to refer to the Kaplan-Meier estimate of the average survival function fit on training
data (Ti, ∆i). Another valuable function is the Kaplan-Meier estimate of the average survival
function of the censoring distribution, which is the same as above but estimated on (Ti, 1−∆i),
this will be denoted by ĜKM .

The Nelson-Aalen estimator for the cumulative hazard function is given by

Ĥ(τ |Dtrain) =
∑

t∈UO,t≤τ

dt

nt
(13.2)

The primary advantage of these models is that they rely on heuristics from empirical outcomes
only and don’t require any assumptions about the form of the data. To train the models they
only require (Ti, ∆i) and both return a prediction of S ⊆ Distr(T ) ((box-task-surv?)). In
addition, both simply account for censoring and can be utilised in fitting other models or to
estimate unknown censoring distributions. The Kaplan-Meier and Nelson-Aalen estimators
are both consistent estimators for the survival and cumulative hazard functions respectively.

Utilising the relationships provided in (?@sec-surv-set-types), one could write the Nelson-
Aalen estimator in terms of the survival function as ŜNA = exp(−Ĥ(τ |Dtrain)). It has
been demonstrated that ŜNA and ŜKM are asymptotically equivalent, but that ŜNA will
provide larger estimates than ŜKM in smaller samples (Colosimo et al. 2002). In practice,
the Kaplan-Meier is the most widely utilised non-parametric estimator in survival analysis
and is the simplest estimator that yields consistent estimation of a survival distribution; it is
therefore a natural, and commonly utilised, ‘baseline’ model (Binder and Schumacher 2008;
Herrmann et al. 2021; Huang et al. 2020a; P. Wang, Li, and Reddy 2019): estimators that
other models should be ‘judged’ against to ascertain their overall performance (Chapter 7).

Not only can these estimators be used for analytical comparison, but they also provide
intuitive methods for graphical calibration of models (Section 9.2). These models are never
stuidied for prognosis directly but as baselines, components of complex models (Chapter 19),
or graphical tools (Habibi et al. 2018; Jager et al. 2008; Moghimi-dehkordi et al. 2008). The
reason for this is due to them having poor predictive performance as a result of omitting
explanatory variables in fitting. Moreover, if the data follows a particular distribution,
parametric methods will be more efficient (P. Wang, Li, and Reddy 2019).

Conditional Estimators

The Kaplan-Meier and Nelson-Aalen estimators are simple to compute and provide good
estimates for the survival time distribution but in many cases they may be overly-simplistic.
Conditional non-parametric estimators include the advantages described above (no assump-
tions about underlying data distribution) but also allow for conditioning the estimation
on the covariates. This is particularly useful when estimating a censoring distribution that
may depend on the data (Chapter 7). However predictive performance of conditional non-
parametric estimators decreases as the number of covariates increases, and these models are
especially poor when censoring is feature-dependent (Gerds and Schumacher 2006).
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The most widely used conditional non-parametric estimator for survival analysis is the
Akritas estimator (Michael G. Akritas 1994) defined by1

Ŝ(τ |X∗,Dtrain, λ) =
∏

j:Tj≤τ,∆j=1

(
1− K(X∗, Xj |λ)∑n

l=1 K(X∗, Xl|λ)I(Tl ≥ Tj)

)
where K is a kernel function, usually K(x, y|λ) = I(|F̂X(x) − F̂X(y)| < λ), λ ∈ (0, 1], F̂X

is the empirical distribution function of the training data, X1, ..., Xn, and λ is a hyper-
parameter. The estimator can be interpreted as a conditional Kaplan-Meier estimator which
is computed on a neighbourhood of subjects closest to X∗ (Blanche, Dartigues, and Jacqmin-
Gadda 2013). To account for tied survival times, the following adaptation of the estimator
is utilised (Blanche, Dartigues, and Jacqmin-Gadda 2013)

Ŝ(τ |X∗,Dtrain, λ) =
∏

t∈UO,t≤τ

(
1−

∑n
j=1 K(X∗, Xj |λ)I(Tj = t, ∆j = 1)∑n

j=1 K(X∗, Xj |λ)I(Tj ≥ t)

)
(13.3)

If λ = 1 then K(·|λ) = 1 and the estimator is identical to the Kaplan-Meier estimator.

The non-parametric nature of the model is highlighted in (Equation 13.3), in which both
the fitting and predicting stages are combined into a single equation. A new observation,
X∗, is compared to its nearest neighbours from a training dataset, Dtrain, without a
separated fitting procedure. One could consider splitting fitting and predicting in order to
clearly separate between training and testing data. In this case, the fitting procedure is the
estimation of F̂X on training data and the prediction is given by (Equation 13.3) with F̂X

as an argument. This separated fit/predict method is implemented in survivalmodels (R.
Sonabend 2020). As with other non-parametric estimators, the Akritas estimator can still be
considered transparent and accessible. With respect to predictive performance, the Akritas
estimator has more explanatory power than non-parametric estimators due to conditioning
on covariates, however this is limited to a very small number of variables and therefore this
estimator is still best placed as a conditional baseline.

13.1.2 Continuous Ranking and Semi-Parametric Models: Cox PH
The Cox Proportional Hazards (CPH) (Cox 1972), or Cox model, is likely the most widely
known semi-parametric model and the most studied survival model (Habibi et al. 2018;
Moghimi-dehkordi et al. 2008; Reid 1994; P. Wang, Li, and Reddy 2019). The Cox model
assumes that the hazard for a subject is proportionally related to their explanatory variables,
X1, ..., Xn, via some baseline hazard that all subjects in a given dataset share (‘the PH
assumption’). The hazard function in the Cox PH model is defined by

h(τ |Xi) = h0(τ) exp(Xiβ)

where h0 is the non-negative baseline hazard function and β = β1, ..., βp where βi ∈ R are
coefficients to be fit. Note the proportional hazards (PH) assumption can be seen as the
estimated hazard, h(τ |Xi), is directly proportional to the model covariates exp(Xiβ). Whilst
a form is assumed for the ‘risk’ component of the model, exp(Xiβ), no assumptions are
made about the distribution of h0, hence the model is semi-parametric.

1Arguments and parameters are separated in function signatures by a pipe, ‘|’, where variables to the
left are parameters (free variables) and those to the right are arguments (fixed). In this equation, τ is a
parameter to be set by the user, and X∗, Dtrain, λ are fixed arguments. This could therefore be simplified
to Ŝ(τ) to only include free variables.
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The coefficients, β, are estimated by maximum likelihood estimation of the ‘partial likelihood’
(Cox 1975), which only makes use of ordered event times and does not utilise all data available
(hence being ‘partial’). The partial likelihood allows study of the informative β-parameters
whilst ignoring the nuisance h0. The predicted linear predictor, η̂ := X∗β̂, can be computed
from the estimated β̂ to provide a ranking prediction.

Inspection of the model is also useful without specifying the full hazard by interpreting the
coefficients as ‘hazard ratios’. Let p = 1 and β̂ ∈ R and let Xi, Xj ∈ R be the covariates of
two training observations, then the hazard ratio for these observations is the ratio of their
hazard functions,

h(τ |Xi)
h(τ |Xj) = h0(τ) exp(Xiβ̂)

h0(τ) exp(Xj β̂)
= exp(β̂)Xi−Xj

If exp(β̂) = 1 then h(τ |Xi) = h(τ |Xj) and thus the covariate has no effect on the hazard.
If exp(β̂) > 1 then Xi > Xj → h(τ |Xi) > h(τ |Xi) and therefore the covariate is positively
correlated with the hazard (increases risk of event). Finally if exp(β̂) < 1 then Xi > Xj →
h(τ |Xi) < h(τ |Xi) and the covariate is negatively correlated with the hazard (decreases risk
of event).

Interpreting hazard ratios is known to be a challenge, especially by clinicians who require
simple statistics to communicate to patients (Sashegyi and Ferry 2017; Spruance et al. 2004).
For example the full interpretation of a hazard ratio of ‘2’ for binary covariate X would be:
‘assuming that the risk of death is constant at all time-points then the instantaneous risk of
death is twice as high in a patient with X than without’. Simple conclusions are limited to
stating if patients are at more or less risk than others in their cohort. Further disadvantages
of the model also lie in its lack of real-world interpretabilitity, these include (Reid 1994):

• the PH assumption may not be realistic and the risk of event may not be constant over
time;

• the estimated baseline hazard from a non-parametric estimator is a discrete step-function
resulting in a discrete survival distribution prediction despite time being continuous; and

• the estimated baseline hazard will be constant after the last observed time-point in the
training set (Gelfand et al. 2000).

Despite these disadvantages, the model has been demonstrated to have excellent predictive
performance and routinely outperforms (or at least does not underperform) sophisticated
ML models (Michael F. Gensheimer and Narasimhan 2018; Luxhoj and Shyur 1997; Van
Belle et al. 2011) (and (R. E. B. Sonabend 2021)). It’s simple form and wide popularity
mean that it is also highly transparent and accessible.

The next class of models address some of the Cox model disadvantages by making assumptions
about the baseline hazard.

13.1.3 Conditional Distribution Predictions: Parametric Linear Models
Parametric Proportional Hazards

The CPH model can be extended to a fully parametric PH model by substituting the unknown
baseline hazard, h0, for a particular parameterisation. Common choices for distributions
are Exponential, Weibull and Gompertz (John D. Kalbfleisch and Prentice 2011; P. Wang,
Li, and Reddy 2019); their hazard functions are summarised in ((tab-survivaldists?))
along with the respective parametric PH model. Whilst an Exponential assumption leads
to the simplest hazard function, which is constant over time, this is often not realistic in
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real-world applications. As such the Weibull or Gompertz distributions are often preferred.
Moreover, when the shape parameter, γ, is 1 in the Weibull distribution or 0 in the Gompertz
distribution, their hazards reduce to a constant risk ((Figure 13.1)). As this model is fully
parametric, the model parameters can be fit with maximum likelihood estimation, with the
likelihood dependent on the chosen distribution.

Table 13.2: Exponential, Weibull, and Gompertz hazard functions and PH specification.

Distribution1 h0(τ)2 h(τ |Xi)3

Exp(λ) λ λ exp(Xiβ)
Weibull(γ, λ) λγτγ−1 λγτγ−1 exp(Xiβ)
Gompertz(γ, λ) λ exp(γτ) λ exp(γτ) exp(Xiβ)

* 1. Distribution choices for baseline hazard. γ, λ are shape and scale parameters respectively.
* 2. Baseline hazard function, which is the (unconditional) hazard of the distribution. * 3.
PH hazard function, h(τ |Xi) = h0(τ) exp(Xiβ).

Figure 13.1: Comparing the hazard curves under Weibull and Gompertz distributions for
varying values of the shape parameter; scale parameters are set so that each parametrisation
has a median of 20. x-axes are time and y-axes are Weibull (top) and Gompertz (bottom)
hazards as a function of time.

In the literature, the Weibull distribution tends to be favoured as the initial assumption
for the survival distribution (Michael F. Gensheimer and Narasimhan 2018; Habibi et al.
2018; Hielscher et al. 2010; R. and J. 1968; Rahman et al. 2017), though Gompertz is often
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tested in death-outcome models for its foundations in modelling human mortality (Gompertz
1825). There exist many tests for checking the goodness-of-model-fit (?@sec-eval-insample)
and the distribution choice can even be treated as a model hyper-parameter. Moreover
it transpires that model inference and predictions are largely insensitive to the choice of
distribution (Collett 2014; Reid 1994). In contrast to the Cox model, fully parametric PH
models can predict absolutely continuous survival distributions, they do not treat the baseline
hazard as a nuisance, and in general will result in more precise and interpretable predictions
if the distribution is correctly specified (Reid 1994; Patrick Royston and Parmar 2002).

Whilst misspecification of the distribution tends not to affect predictions too greatly, PH
models will generally perform worse when the PH assumption is not valid. PH models can
be extended to include time-varying coefficients or model stratification (Cox 1972) but even
with these adaptations the model may not reflect reality. For example, the predicted hazard
in a PH model will be either monotonically increasing or decreasing but there are many
scenarios where this is not realistic, such as when recovering from a major operation where
risks tends to increase in the short-term before decreasing. Accelerated failure time models
overcome this disadvantage and allow more flexible modelling, discussed next.

Accelerated Failure Time

In contrast to the PH assumption, where a unit increase in a covariate is a multiplicative
increase in the hazard rate, the Accelerated Failure Time (AFT) assumption means that a
unit increase in a covariate results in an acceleration or deceleration towards death (expanded
on below). The hazard representation of an AFT model demonstrates how the interpretation
of covariates differs from PH models,

h(τ |Xi) = h0(exp(−Xiβ)τ) exp(−Xiβ)

where β = (β1, ..., βp) are model coefficients. In contrast to PH models, the ‘risk’ component,
exp(−Xiβ), is the exponential of the negative linear predictor and therefore an increase
in a covariate value results in a decrease of the predicted hazard. This representation also
highlights how AFT models are more flexible than PH as the predicted hazard can be
non-monotonic. For example the hazard of the Log-logistic distribution ((Figure 13.2)) is
highly flexible depending on chosen parameters. Not only can the AFT model offer a wider
range of shapes for the hazard function but it is more interpretable. Whereas covariates in a
PH model act on the hazard, in an AFT they act on time, which is most clearly seen in the
log-linear representation,

log Yi = µ + α1Xi1 + α2Xi2 + ... + αpXip + σϵi

where µ and σ are location and scale parameters respectively, α1, ..., αp are model coefficients,
and ϵi is a random error term. In this case a one unit increase in covariate Xij means a αj

increase in the logarithmic survival time. For example if exp(Xiα) = 0.5 then i ‘ages’ at
double the baseline ‘speed’. Or less abstractly if studying the time until death from cancer
then exp(Xiα) = 0.5 can be interpreted as ‘the entire process from developing tumours to
metastasis and eventual death in subject i is twice as fast than the normal’, where ‘normal’
refers to the baseline when all covariates are 0.

Specifying a particular distribution for ϵi yields a fully-parametric AFT model. Common
distribution choices include Weibull, Exponential, Log-logistic, and Log-Normal (John D.
Kalbfleisch and Prentice 2011; P. Wang, Li, and Reddy 2019). The Buckley-James estimator
(Buckley and James 1979) is a semi-parametric AFT model that non-parametrically estimates
the distribution of the errors however this model has no theoretical justification and is rarely
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fit in practice (Wei 1992). The fully-parametric model has theoretical justifications, natural
interpretability, and can often provide a better fit than a PH model, especially when the PH
assumption is violated (Patel, Kay, and Rowell 2006; Qi 2009; Zare et al. 2015).

Figure 13.2: Log-logistic hazard curves with a fixed scale parameter of 1 and a changing
shape parameter. x-axis is time and y-axis is the log-logistic hazard as a function of time.

Proportional Odds

Proportional odds (PO) models (Bennett 1983) fit a proportional relationship between
covariates and the odds of survival beyond a time τ ,

Oi(τ) = Si(τ)
Fi(τ) = O0(τ) exp(Xiβ)

where O0 is the baseline odds.

In this model, a unit increase in a covariate is a multiplicative increase in the odds of survival
after a given time and the model can be interpreted as estimating the log-odds ratio. There
is no simple closed form expression for the partial likelihood of the PO model and hence in
practice a Log-logistic distribution is usually assumed for the baseline odds and the model is
fit by maximum likelihood estimation on the full likelihood (Bennett 1983).

Perhaps the most useful feature of the model is convergence of hazard functions (Kirmani
and Gupta 2001), which states hi(τ)/h0(τ)→ 1 as τ →∞. This property accurately reflects
real-world scenarios, for example if comparing chemotherapy treatment on advanced cancer
survival rates, then it is expected that after a long period (say 10 years) the difference in risk
between groups is likely to be negligible. This is in contrast to the PH model that assumes
the hazard ratios are constant over time, which is rarely a reflection of reality.

In practice, the PO model is harder to fit and is less flexible than PH and AFT models, both
of which can also produce odds ratios. This may be a reason for the lack of popularity of
the PO model, in addition there is limited off-shelf implementations (Collett 2014). Despite
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PO models not being commonly utilised, they have formed useful components of neural
networks (Section 17.1) and flexible parametric models (below).

Flexible Parametric Models – Splines

Royston-Parmar flexible parametric models (Patrick Royston and Parmar 2002) extend PH
and PO models by estimating the baseline hazard with natural cubic splines. The model
was designed to keep the form of the PH or PO methods but without the semi-parametric
problem of estimating a baseline hazard that does not reflect reality (see above), or the
parametric problem of misspecifying the survival distribution.

To provide an interpretable, informative and smooth hazard, natural cubic splines are fit in
place of the baseline hazard. The crux of the method is to use splines to model time on a
log-scale and to either estimate the log cumulative Hazard for PH models, log H(τ |Xi) =
log H0(τ) + Xiβ, or the log Odds for PO models, log O(τ |Xi) = log O0(τ) + Xiβ, where β
are model coefficients to fit, H0 is the baseline cumulative hazard function and O0 is the
baseline odds function. For the flexible PH model, a Weibull distribution is the basis for the
baseline distribution and a Log-logistic distribution for the baseline odds in the flexible PO
model. log H0(τ) and log O0(τ) are estimated by natural cubic splines with coefficients fit
by maximum likelihood estimation. The standard full likelihood is optimised, full details are
not provided here. Between one and three internal knots are recommended for the splines
and the placement of knots does not greatly impact upon the fitted model (Patrick Royston
and Parmar 2002).

Advantages of the model include being: interpretable, flexible, can be fit with time-dependent
covariates, and it returns a continuous function. Moreover many of the parameters, including
the number and position of knots, are tunable, although Royston and Parmar advised against
tuning and suggest often only one internal knot is required (Patrick Royston and Parmar
2002). A recent simulation study demonstrated that even with an increased number of
knots (up to seven degrees of freedom), there was little bias in estimation of the survival
and hazard functions (Bower et al. 2019). Despite its advantages, a 2018 review (Ng et al.
2018) found only twelve instances of published flexible parametric models since Royston
and Parmar’s 2002 paper, perhaps because it is more complex to train, has a less intuitive
fitting procedure than alternatives, and has limited off-shelf implementations; i.e. is less
transparent and accessible than parametric alternatives.

The PH and AFT models are both very transparent and accessible, though require slightly
more expert knowledge than the CPH in order to specify the ‘correct’ underlying probability
distribution. Interestingly whilst there are many papers comparing PH and AFT models to
one another using in-sample metrics (?@sec-eval-insample) such as AIC (Georgousopoulou
et al. 2015; Habibi et al. 2018; Moghimi-dehkordi et al. 2008; Zare et al. 2015), no benchmark
experiments could be found for out-of-sample performance. PO and spline models are
less transparent than PH and AFT models and are even less accessible, with very few
implementations of either. No conclusions can be drawn about the predictive performance of
PO or spline models due to a lack of suitable benchmark experiments.
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Random forests are a composite (or ensemble) algorithm built by fitting many simpler
component models, decision trees, and then averaging the results of predictions from these
trees. Due to in-built variable importance properties, random forests are commonly used in
high-dimensional settings when the number of variables in a dataset far exceeds the number
of rows. High-dimensional datasets are very common in survival analysis, especially when
considering omics, genetic and financial data. It is therefore no surprise that random survival
forests, remain a popular and well-performing model in the survival setting.

14.1 Random Forests for Regression
Training of decision trees can include a large number of hyper-parameters and different
training steps including ‘growing’ and subsequently ‘pruning’. However, when utilised in
random forests, many of these parameters and steps can be safely ignored, hence this section
only focuses on the components that primarily influence the resulting random forest. This
section will start by discussing decision trees and will then introduce the bagging algorithm
used to create random forests.

14.1.1 Decision Trees
Decision trees are a (relatively) simple machine learning model that are comparatively easy
to implement in software and are highly interpretable. The decision tree algorithm takes
an input, a dataset, selects a variable that is used to partition the data according to some
splitting rule into distinct non-overlapping datasets or nodes or leaves, and repeats this step
for the resulting partitions, or branches, until some criterion has been reached. The final
nodes are referred to as terminal nodes.

By example, (Figure 14.1) demonstrates a decision tree predicting the price that a car sells
for in India (price in thousands of dollars). The dataset includes as variables the registration
year, kilometers driven, fuel type (petrol or automatic), seller type (individual or dealer),
transmission type (manual or automatic), and number of owners. The decision tree was

109



110 Random Forests

trained with a maximum depth of 2 (the number of rows excluding the top), and it can
be seen that with this restriction only the transmission type, registration year, and fuel
type were selected variables. During training, the algorithm identified that the first optimal
variable to split the data was transmission type, partitioning the data into manual and
automatic cars. Manual cars are further subset by registration year whereas automatic cars
are split by fuel type. It can also be seen how the average sale price (top value in each leaf)
diverges between leaves as the tree splits – the average sale prices in the final leaves are the
terminal node predictions.

The graphic highlights several core features of decision trees:

1. They can model non-linear and interaction effects: The hierarchical structure
allows for complex interactions between variables with some variables being used
to separate all observations (transmission) and others only applied to subsets
(year and fuel);

2. They are highly interpretable: it is easy to visualise the tree and see how predictions
are made;

3. They perform variable selection: not all variables were used to train the model.

To understand how random forests work, it is worth looking a bit more into the most
important components of decision trees: splitting rules, stopping rules, and terminal node
predictions.

Figure 14.1: Predicting the price a vehicle is sold for in India using a regression tree, dataset
from kaggle.com/datasets/nehalbirla/vehicle-dataset-from-cardekho. Rounded rectangles
are leaves, which indicate the variable that is being split. Edges are branches, which indicate
the cut-off at which the variable is split. Variables are car transmission type (manual or
automatic), fuel type (petrol or diesel) and registration year. The number at the top of
each leaf is the average selling price in thousands of dollars for all observations in that leaf.
The numbers at the bottom of each leaf are the number of observations in the leaf, and the
proportion of data contained in the leaf.
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Splitting and Stopping Rules

Precisely how the data partitions/splits are derived and which variables are utilised is
determined by the splitting rule. The goal in each partition is to find two resulting leaves/nodes
that have the greatest difference between them and thus the maximal homogeneity within
each leaf, hence with each split, the data in each node should become increasingly similar.
The splitting rule provides a way to measure the homogeneity within the resulting nodes. In
regression, the most common splitting rule is to select a variable and cut-off (a threshold on
the variable at which to separate observations) that minimises the mean squared error in
the two potential resulting leaves.

For all decision tree and random forest algorithms going forward, let L denote some leaf,
then let Lxy, Lx, Ly respectively be the set of observations, features, and outcomes in leaf L.
Let Ly;i be the ith outcome in Ly and finally let ȳL = 1

|Ly|
∑|Ly|

i=1 Ly;i be the mean outcome
in leaf L.

Let j = 1, . . . , p be the index of features and let cj be a possible cutoff value for feature x;j .
Define

La
xy(j, cj) := {(xi, yi)|xi;j < cj , i = 1, ..., n}

Lb
xy(j, cj) := {(xi, yi)|xi;j ≥ cj , i = 1, ..., n}

as the two leaves containing the set of observations resulting from partitioning variable j at
cutoff cj . To simplify equations let La, Lb be shorthands for La(j, cj) and Lb(j, cj). Then
a split is determined by finding the arguments, (j∗, c∗

j∗) that minimise the residual sum of
squares across both leaves (James et al. 2013),

(j∗, c∗
j∗) = arg min

j,cj

∑
y∈La

y

(y − ȳLa)2 +
∑

y∈Lb
y

(y − ȳLb)2 (14.1)

This method is repeated from the first leaf to the last such that observations are included in
a given leaf L if they satisfy all conditions from all previous branches (splits); features may
be considered multiple times in the growing process allowing complex interaction effects to
be captured.

Leaves are repeatedly split until a stopping rule has been triggered – a criterion that tells the
algorithm to stop partitioning data. The stopping rule is usually a condition on the number
of observations in each leaf such that leaves will continue to be split until some minimum
number of observations has been reached in a leaf. Other conditions may be on the depth of
the tree (as in Figure 14.1 which is restricted to a maximum depth of 2), which corresponds
to the number of levels of splitting. Stopping rules are often used together, for example by
setting a maximum tree depth and determining a minimum number of observations per
leaf. Deciding the number of minimum observations and/or the maximum depth can be
performed with automated hyper-parameter optimisation.

Terminal Node Predictions

The final major component of decision trees are terminal node predictions. As the name
suggests, this is the part of the algorithm that determines how to actually make a prediction
for a new observation. A prediction is made by ‘dropping’ the new data ‘down’ the tree
according to the optimal splits that were found during training. The resulting prediction
is then a simple baseline statistic computed from the training data that fell into the
corresponding node. In regression, this is commonly the sample mean of the training
outcome data.
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Returning to Figure 14.1, say a new data point is {transmission = Manual, fuel = Diesel,
year = 2015}, then in the first split the left branch is taken as ‘transmission = Manual’, in
the second split the right branch is taken as ‘year’ = 2015 ≥ 2014, hence the new data point
lands in the second terminal leaf and is predicted to sell for $7,600. The ‘fuel’ variable is
ignored as it is only considered for automatic vehicles. As the final predictions are simple
statistics based on training data, all potential predictions can be saved in the original trained
model and no complex computations are required in the prediction algorithm.

14.1.2 Random Forests
Decision trees often overfit the training data, hence they have high variance, perform poorly
on new data, and are not robust to even small changes in the original training data. Moreover,
important variables can end up being ignored as only subsets of dominant variables are
selected for splitting.

To counter these problems, random forests are designed to improve prediction accuracy and
decrease variance. Random forests utilise bootstrap aggregation, or bagging (Leo Breiman
1996), to aggregate many decision trees. Bagging is a relatively simple algorithm, as follows:

1. For b = 1, ..., B:
2. Db ← Randomly sample with replacement Dtrain

3. ĝb ← Train a decision tree on Db

4. end For
5. return {ĝb}B

b=1

Step 2 is known as bootstrapping, which is the process of sampling a dataset with replacement –
which is in contrast to more standard subsampling where data is sampled without replacement.
Commonly, the bootstrapped sample size is the same as the original. However, as the same
value may be sampled multiple times, on average the resulting data only contains around
63.2% unique observations (Efron and Tibshirani 1997). Randomness is further injected
to decorrelate the trees by randomly subsetting the candidates of features to consider at
each split of a tree. Therefore, every split of every tree may consider a different subset of
variables. This process is repeated for B trees, with the final output being a collection of
trained decision trees.

Prediction from a random forest for new data x∗ follows by making predictions from the
individual trees and aggregating the results by some function σ, which is usually the sample
mean for regression:

ĝ(x∗) = σ(ĝ1(x∗), ..., ĝB(x∗)) = 1
B

B∑
b=1

ĝb(x∗)

where ĝb(x∗) is the prediction from the bth tree for some new data x∗ and B are the total
number of grown trees.

As discussed above, individual decision trees result in predictions with high variance that are
not robust to small changes in the underlying data. Random forests decrease this variance
by aggregating predictions over a large sample of decorrelated trees, where a high degree of
difference between trees is promoted through the use of bootstrapped samples and random
candidate feature selection at each split.
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Usually many (hundreds or thousands) trees are grown, which makes random forests robust
to changes in data and ‘confident’ about individual predictions. Other advantages include
having tunable and meaningful hyper-parameters, including: the number of variables to
consider for a single tree, the splitting rule, and the stopping rule. Random forests treat
trees as weak learners, which are not intended to be individually optimized. Instead, each
tree captures a small amount of information about the data, which are combined to form a
powerful representation of the dataset.

Whilst random forests are considered a ‘black-box’, in that one cannot be reasonably expected
to inspect thousands of individual trees, variable importance can still be aggregated across
trees, for example by counting the frequency a variable was selected across trees, calculating
the minimal depth at which a variable was used for splitting, or via permutation based
feature importance. Hence the model remains more interpretable than many alternative
methods. Finally, random forests are less prone to overfitting and this can be relatively easily
controlled by using early-stopping methods, for example by continually growing trees until
the performance of the model stops improving.

14.2 Random Survival Forests
Unlike other machine learning methods that may require complex changes to underlying
algorithms, random forests can be relatively simply adapted to random survival forests by
updating the splitting rules and terminal node predictions to those that can handle censoring
and can make survival predictions. This chapter is therefore focused on outlining different
choices of splitting rules and terminal node predictions, which can then be flexibly combined
into different models.

14.2.1 Splitting Rules
Survival trees and RSFs have been studied for the past four decades and whilst there are
many possible splitting rules (Bou-Hamad, Larocque, and Ben-Ameur 2011), only two broad
classes are commonly utilised (as judged by number of available implementations, e.g.,
Pölsterl (2020); Wright and Ziegler (2017); H. Ishwaran et al. (2011)). The first class rely on
hypothesis tests, and primarily the log-rank test, to maximise dissimilarity between splits, the
second class utilises likelihood-based measures. The first is discussed in more detail as this is
common in practice and is relatively straightforward to implement and understand, moreover
it has been demonstrated to outperform other splitting rules (Bou-Hamad, Larocque, and
Ben-Ameur 2011). Likelihood rules are more complex and require assumptions that may not
be realistic, these are discussed briefly.

Hypothesis Tests

The log-rank test statistic has been widely utilized as a splitting-rule for survival analysis
(Ciampi et al. 1986; B. H. Ishwaran et al. 2008; LeBlanc and Crowley 1993; Segal 1988). The
log-rank test compares the survival distributions of two groups under the null-hypothesis
that both groups have the same underlying risk of (immediate) events, with the hazard
function used to compare underlying risk.

Let La and Lb be two leaves and let ha, hb be the (theoretical, true) hazard functions in the
two leaves respectively and let i ∈ L be a shorthand for the indices of the observations in
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leaf L so that i = 1, . . . , |L|. Define:

• UD, the set of unique event times across the data (in both leaves)

• na
τ , the number of observations at risk at τ in leaf a

na
τ =

∑
i∈La

I(ti ≥ τ)

• oa
τ , the observed number of events in leaf a at τ

oa
τ =

∑
i∈La

I(ti = τ, δi = 1)

• nτ = na
τ + nb

τ , the number of observations at risk at τ in both leaves
• oτ = oa

τ + ob
τ , the observed number of events at τ in both leaves

Then, the log-rank hypothesis test is given by H0 : ha = hb with test statistic (Segal 1988),

LR(La) =
∑

τ∈UD
(oa

τ − ea
τ )√∑

τ∈UD
va

τ

where:

• ea
τ is the expected number of events in leaf a at τ

ea
τ := na

τ oτ

nτ

• va
τ is the variance of the number of events in leaf a at τ

va
τ := ea

τ

(nτ − oτ

nτ

)(nτ − na
τ

nτ − 1

)
These results follow as under the assumption of equal hazards in both leafs, the number of
events at each τ ∈ UD is distributed according to a Hypergeometric distribution. The same
statistic results if Lb is instead considered.

The higher the log-rank statistic, the greater the dissimilarity between the two groups
(Figure 14.2), thereby making it a sensible splitting rule for survival, moreover it has been
shown that it works well for splitting censored data (LeBlanc and Crowley 1993). Additionally,
the log-rank test requires no knowledge about the shape of the survival curves or distribution
of the outcomes in either group (Bland and Altman 2004), making it ideal for an automated
process that requires no user intervention.

The log-rank score rule (Hothorn and Lausen 2003) is a standardized version of the log-rank
rule that could be considered as a splitting rule, though simulation studies have demonstrated
non-significant improvements in predictive performance when comparing the two (B. H.
Ishwaran et al. 2008). Alternative dissimiliarity measures and tests have also been suggested
as splitting rules, including modified Kolmogorov-Smirnov test and Gehan-Wilcoxon tests
(Ciampi et al. 1988). Simulation studies have demonstrated that both of these may have
higher power and produce ‘better’ results than the log-rank statistic (Fleming et al. 1980),
however neither appears to be commonly used.



Random Survival Forests 115

Figure 14.2: Panel (a) is the Kaplan-Meier estimator fit on the complete lung dataset from
the R package survival. (b-c) is the same data stratified according to whether ‘age’ is greater
or less than 50 (panel b) or 75 (panel c). The higher χ2 statistic (panel c) results in a lower
p-value and a greater difference between the stratified Kaplan-Meier curves. Hence splitting
age at 75 results in a greater dissimilarity between the resulting branches and thus makes a
better choice for splitting the variable.
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In a competing risk setting, Gray’s test (Gray 1988) can be used instead of the log-rank test,
as it compares cumulative incidence functions rather than all-cause hazards. Similarly to
the log-rank test, Gray’s test also compares survival distributions using hypothesis tests to
determine if there are significant differences between the groups, thus making it a suitable
option to build competing risk RSFs.

Alternative Splitting Rules

A common alternative to the log-rank test is to instead use likelihood ratio, or deviance,
statistics. When building RSFs, the likelihood-ratio statistic can be used to test if the model
fit is improved or worsened with each split, thus providing a way to partition data. However,
as discussed in ?@sec-surv-obj, there are many different likelihoods that can be assumed
for survival data, and there is no obvious way to determine if one is more sensible than
another. Furthermore the choice of likelihood must fit the underlying model assumptions.
For example, one could assume the data fits the proportional hazards assumption and
in each split one could calculate the likelihood-ratio using the Cox PH partial likelihood.
Alternatively, a parametric form could be assumed and a likelihood proposed by LeBlanc
and Crowley (1992) may be calculated to test model fit. While potentially useful, these
methods are implemented in very few off-shelf software packages, thus empirical comparisons
to other splitting rules are lacking.

Other rules have also been studied including comparison of residuals (Therneau, Grambsch,
and Fleming 1990), scoring rules (H. Ishwaran and Kogalur 2018), distance metrics (Gordon
and Olshen 1985), and concordance metrics (Schmid, Wright, and Ziegler 2016). Experiments
have shown different splitting rules may perform better or worse depending on the underlying
data (Schmid, Wright, and Ziegler 2016), hence one could even consider treating the splitting
rule as a hyper-parameter for tuning. However, if there is a clear goal in prediction, then the
choice of splitting rule can be informed by the prediction type. For example, if the goal is to
maximise separation, then a log-rank splitting rule to maximise homogeneity in terminal
nodes is a natural starting point. Whereas if the goal is to accurately rank observations,
then a concordance splitting rule may be optimal.

14.2.2 Terminal Node Prediction
As in the regression setting, the usual strategy for predictions is to create a simple estimate
based on the training data that lands in the terminal nodes. However, as seen throughout
this book, the choice of estimator in the survival setting depends on the prediction task of
interest, which are now considered in turn. First, note that all terminal node predictions can
only yield useful results if there are a sufficient number of uncensored observations in each
terminal node. Hence, a common RSF stopping rule is the minimum number of uncensored
observations per leaf, meaning a leaf is not split if that would result in too few uncensored
observations in the resulting leaves.

Probabilistic Predictions

Starting with the most common survival prediction type, the algorithm requires a simple
estimate for the underlying survival distribution in each of the terminal nodes, which can
be estimated using the Kaplan-Meier or Nelson-Aalen methods (Hothorn et al. 2004; B. H.
Ishwaran et al. 2008; LeBlanc and Crowley 1993; Segal 1988).

Denote b as a decision tree and Lb(h) as the terminal node h in tree b. Then the predicted
survival function and cumulative hazard for a new observation x∗ is,
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Ŝb(h)(τ |x∗) =
∏

i:t(i)≤τ

1−
dt(i)

nt(i)

, {i ∈ Lb(h) : x∗ ∈ Lb(h)} (14.2)

Ĥb(h)(τ |x∗) =
∑

i:t(i)≤τ

dt(i)

nt(i)

, {i ∈ Lb(h) : x∗ ∈ Lb(h)} (14.3)

where t(i) is the ordered event times and dt(i) and nt(i) are the observed number of events,
and the number of observations at risk, respectively at t(i). See Figure 14.3 for an example
using the lung dataset (Therneau 2015).

Figure 14.3: Survival tree trained on the lung dataset from the R package survival. The
terminal node predictions are survival curves.

The bootstrapped prediction is the cumulative hazard function or survival function averaged
over individual trees. Note that understanding what these bootstrapped functions represents
depends on how they are calculated. By definition, a mixture of n distributions with
cumulative distribution functions Fi, i = 1, ..., n is given by

F (x) =
n∑

i=1
wiFi(x)

Subsituting F = 1− S and noting
∑

wi = 1 gives the computation S(x) =
∑n

i=1 wiSi(x),
allowing the bootstrapped survival function to exactly represent the mixture distribution
averaged over all trees:
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ŜBoot(τ |x∗) = 1
B

B∑
b=1

wiŜb(τ |x∗) (14.4)

usually with wi = 1/B where B is the number of trees.

In contrast, if one were to instead substitute F = 1−exp(−H), then the mixture distribution
depends on a logarithmic function that can only be approximately computed if predicted
survival probabilities are close to one, which is an assumption that deteriorates over time.
Therefore, to ensure the bootstrapped prediction accurately represents the underlying mixed
probability distribution, the bootstrapped cumulative hazard function should be computed
as:

ĤBoot(τ |x∗) = − log(ŜBoot(τ |x∗)) (14.5)

Another practical consideration to take into account is how to average the survival prob-
abilities over the decision trees as each individual Kaplan-Meier estimate may have been
trained on different time points. This is overcome by recognising that the Kaplan-Meier
estimation results in a piece-wise function that can be linearly interpolated between training
data. Figure 14.4 demonstrates this process for three decision trees (panel a), where the
survival probability is calculated at all possible time points (panels b-c), and the average is
computed with linear interpolation added between time-points (panel d).

Extensions to competing risks follow naturally using bootstrapped cause-specific cumulative
incidence functions.

Deterministic Predictions

As discussed in Chapter 11, predicting and evaluating survival times is a complex and fairly
under-researched area. For RSFs, there is an inclination to estimate survival times based on
the mean or median survival times of observations in terminal nodes, however this would lead
to biased estimations. Therefore, research has tended to focus on relative risk predictions.

As discussed, relative risks are arbitrary values where only the resulting rank matters when
comparing observations. In RSFs, each terminal node should be as homogeneous as possible,
hence within a terminal node, the risk between observations should be the same. The
most common method to estimate average risk appears to be a transformation from the
Nelson-Aalen method (B. H. Ishwaran et al. 2008), which exploits results from counting
process to provide a measure of expected mortality (Hosmer Jr, Lemeshow, and May 2011) –
the same result is used in the van Houwelingen calibration measure discussed in Section 9.1.2.
Given new data, x∗, falling into terminal node b(h), the relative risk prediction is the sum of
the predicted cumulative hazard, Ĥb(h), computed at each observation’s observed outcome
time:

ϕb(h)(x∗) =
∑

i∈UO

Ĥb(h)(ti|x∗)

where Ĥb(h) is the terminal node prediction as in Equation 14.3. This is interpreted as
the number of expected events in b(h) and the assumption is that a terminal node with
more expected events is a higher risk group than a node with less expected events. The
bootstrapped risk prediction is the sample mean over all trees:
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Figure 14.4: Bootstrapping Kaplan-Meier estimators across three decision trees (red, blue,
green). Panel a) shows the individual estimates, b) shows the time points to aggregate the
trees over, c) is the predicted survival probability from each tree at the desired time points,
and d) is the average survival probabilities connected by a step function.



120 Random Forests

ϕBoot(x∗) = 1
B

B∑
b=1

ϕb(h)(x∗)

More complex methods have also been proposed that are based on the likelihood-based
splitting rule and assume a PH model form (H. Ishwaran et al. 2004; LeBlanc and Crowley
1992). However, these do not appear to be in wide-spread usage.

14.3 Conclusion

Key takeaways

• Random forests are a highly flexible algorithm that allow the various components to
be adapted and altered without major changes to the underlying algorithm. This
allows random survival forests (RSFs) to be readily available ‘off-shelf’ in many
open-source packages;

• RSFs have in-built variable selection methods that mean they tend to perform well
on high-dimensional data, routinely outperforming other models Burk et al. (2024);

• Despite having many potential hyper-parameters to tune, all are intuitive and
many can even be ignored as sensible defaults exist in most off-shelf software
implementations.

Limitations

• Due to the number of trees and the constant bootstrapping procedures, RSFs can be
more computationally intensive than other models, though still much less intensive
than neural networks and other deep learning methods.

• Despite having some in-built methods for model interpretation, RSFs are still black-
boxes that can be difficult to fully interpret.

• With too few trees random forests can have similar limitations to decision trees
and with too many random forests can overfit the data. Though most software has
sensible defaults to prevent either scenario.

Further reading

• A comprehensive review of random survival forests (RSFs) is provided in Bou-Hamad
(2011) (Bou-Hamad, Larocque, and Ben-Ameur 2011), which includes extensions to
time-varying covariates and different censoring types.

• The discussion of decision trees omitted many methods for growing and pruning
trees, if you are interest in those technical details see L. Breiman et al. (1984).

• RSFs have been shown to perform well in benchmark experiments on high-dimensional
data, see Herrmann et al. (2021) and Spooner et al. (2020) for examples.

• This chapter considered the most ‘traditional’ forms of RSFs. Conditional inference
forests are popular in the regression setting and whilst they are under-researched
in survival, see Hothorn et al. (2005) for literature on the topic. A more recent
method that seems to perform well is the (accelerated) oblique random survival
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forest discussed in (Jaeger2024?).





15
Support Vector Machines

This chapter introduces support vector machines (SVMs) for regression and then describes
the extensions to survival analysis. Regression SVMs extend simple linear methods by
estimating flexible, non-linear hyperplanes that minimise the difference between predictions
and the truth for individual observations. In survival analysis, SVMs may make survival
time or ranking predictions, however there is no current formulation for survival distribution
predictions. The chapter begins by discussing survival time SVMs and then ranking models
before concluding with a hybrid formulation that combines both model forms. This primarily
covers the work of Shivaswamy and Van Belle. SVMs are a powerful method for estimating
non-linear relationships in data and have proven to be well-performing models in regression
and classification. However, SVMs are less developed in survival analysis and have been
shown to perform worse than other models in experiments.

. Minor changes expected!

This page is a work in progress and minor changes will be made over time.

Support vector machines are a popular class of models in regression and classification settings
due to their ability to make accurate predictions for complex high-dimensional, non-linear
data. Survival support vector machines (SSVMs) predict continuous responses that can be
used as ranking predictions with some formulations that provide survival time interpretations.
This chapter starts with SVMs in the regression setting before moving to adaptions for
survival analysis.

15.1 SVMs for Regression
In simple linear regression, the aim is to estimate the line y = α + xβ1 by estimating the
α, β1 coefficients. As the number of coefficients increases, the goal is to instead estimate the
hyperplane, which divides the higher-dimensional space into two separate parts. To visualize
a hyperplane, imagine looking at a room from a birds eye view that has a dividing wall
cutting the room into two halves (Figure 15.1). In this view, the room appears to have
two dimensions (x=left-right, y=top-bottom) and the divider is a simple line of the form
y = α + xβ1. In reality, this room is actually three dimensional and has a third dimension
(z=up-down) and the divider is therefore a hyperplane of the form y = α + xβ1 + zβ2.

Continuing the linear regression example, consider a simple model where the objective
is to find the β = (β1 β2 · · ·βp)⊤ coefficients that minimize

∑n
i=1(g(xi) − yi)2 where

123
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Figure 15.1: Visualising a hyperplane by viewing a 3D room in two-dimensions with a wall
that is now seen as a simple line. When standing in this room, the wall will clearly exist in
three dimensional space.
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g(xi) = α + x⊤
i β and (X, y) is training data such that X ∈ Rn×p and y ∈ Rn. In a

higher-dimensional space, a penalty term can be added for variable selection to reduce model
complexity, commonly of the form

1
2

n∑
i=1

(g(xi)− yi)2 + λ

2 ∥β∥
2

for some penalty term λ ∈ R. Minimizing this error function effectively minimizes the
average difference between all predictions and true outcomes, resulting in a hyperplane that
represents the best linear relationship between coefficients and outcomes.

Similarly to linear regression, support vector machines (SVMs) (Cortes and Vapnik 1995)
also fit a hyperplane, g, on given training data, X. However, in SVMs, the goal is to fit a
flexible (non-linear) hyperplane that minimizes the difference between predictions and the
truth for individual observations. A core feature of SVMs is that one does not try to fit
a hyperplane that makes perfect predictions as this would overfit the training data and is
unlikely to perform well on unseen data. Instead, SVMs use a regularized error function,
which allows incorrect predictions (errors) for some observations, with the magnitude of
error controlled by an ϵ > 0 parameter as well as slack parameters, ξ′ = (ξ′

1 ξ′
2 · · · ξ′

n)⊤

and ξ∗ = (ξ∗
1 ξ∗

2 · · · ξ∗
n)⊤ :

min
β,α,ξ′,ξ∗

1
2∥β∥

2 + C

n∑
i=1

(ξ′
i + ξ∗

i )

subject to


g(xi) ≥ yi − ϵ− ξ′

i

g(xi) ≤ yi + ϵ + ξ∗
i

ξ′
i, ξ∗

i ≥ 0

(15.1)

∀i ∈ 1, ..., n where g(xi) = α + x⊤
i β for model weights β ∈ Rp and α ∈ R and the same

training data (X, y) as above.

Figure 15.2 visualizes a support vector regression model in two dimensions. The red circles
are values within the ϵ-tube and are thus considered to have a negligible error. In fact, the
red circles do not affect the fitting of the optimal line g and even if they moved around, as
long as they remain within the tube, the shape of g would not change. In contrast the blue
diamonds have an unacceptable margin of error – as an example the top blue diamond will
have ξ′

i = 0 but ξ∗
i > 0, thus influencing the estimation of g. Points on or outside the epsilon

tube are referred to as support vectors as they affect the construction of the hyperplane. The
C ∈ R>0 hyperparameter controls the slack parameters and thus as C increases, the number
of errors (and subsequently support vectors) is allowed to increase resulting in low variance
but higher bias, in contrast a lower C is more likely to introduce overfitting with low bias
but high variance (Hastie, Tibshirani, and Friedman 2001). C should be tuned to control
this trade-off.

The other core feature of SVMs is exploiting the kernel trick, which uses functions known as
kernels to allow the model to learn a non-linear hyperplane whilst keeping the computations
limited to lower-dimensional settings. Once the model coefficients have been estimated using
the optimization above, predictions for a new observation x∗ can be made using a function
of the form
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Figure 15.2: Visualising a support vector machine with an ϵ-tube and slack parameters ξ′

and ξ∗. Red circles are values within the ϵ-tube and blue diamonds are support vectors on
and outside the tube. x-axis is single covariate, x, and y-axis is g(x) = xβ1 + α.
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ĝ(x∗) =
n∑

i=1
µiK(x∗, xi) + α (15.2)

Details (including estimation) of the µi Lagrange multipliers are beyond the scope of this
book, references are given at the end of this chapter for the interested reader. K is a kernel
function, with common functions including the linear kernel, K(x∗, xi) =

∑p
j=1 xijx∗

j , radial
kernel, K(x∗, xi) = exp(−ω

∑p
j=1(xij − x∗

j )2) for some ω ∈ R>0, and polynomial kernel,
K(x∗, xi) = (1 +

∑p
j=1 xijx∗

j )d for some d ∈ N>0.

The choice of kernel and its parameters, the regularization parameter C, and the acceptable
error ϵ, are all tunable hyper-parameters, which makes the support vector machine a highly
adaptable and often well-performing machine learning method. The parameters C and ϵ
often have no clear apriori meaning (especially true in the survival setting predicting abstract
rankings) and thus require tuning over a great range of values; no tuning usually results in a
poor model fit (Probst, Boulesteix, and Bischl 2019).

15.2 SVMs for Survival Analysis
Extending SVMs to the survival domain (SSVMs) is a case of: i) identifying the quantity to
predict; and ii) updating the optimization problem (Equation 15.1) and prediction function
(Equation 15.2) to accommodate for censoring. In the first case, SSVMs can be used to
either make survival time or ranking predictions, which are discussed in turn. The notation
above is reused below for SSVMs, with additional notation introduced when required and
now using the survival training data (X, t, δ).

15.2.1 Survival time SSVMs
To begin, consider the objective for support vector regression with the y variable replaced
with the usual survival time outcome t, for all i ∈ 1, ..., n:

min
β,α,ξ′,ξ∗

1
2∥β∥

2 + C

n∑
i=1

(ξ′
i + ξ∗

i )

subject to


g(xi) ≥ ti − ϵ− ξ′

i

g(xi) ≤ ti + ϵ + ξ∗
i

ξ′
i, ξ∗

i ≥ 0

(15.3)

In survival analysis, this translates to fitting a hyperplane in order to predict the true
survival time. However, as with all adaptations from regression to survival analysis, there
needs to be a method for incorporating censoring.

Recall the (tl, tu) notation to describe censoring as introduced in Chapter 4 such that the
outcome occurs within the range (tl, tu). Let τ ∈ R>0 be some known time-point, then an
observation is:

• left-censored if the survival time is less than τ : (tl, tu) = (−∞, τ);
• right-censored if the true survival time is greater than τ : (tl, tu) = (τ,∞); or
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• uncensored if the true survival time is known to be τ : (tl, tu) = (τ, τ).

Define L = {i : ti > −∞} as the set of observations with a finite lower-bounded time, which
can be seen above to be those that are right-censored or uncensored. Define U = {i : ti <∞}
as the analogous set of observations with a finite upper-bounded time, which are those that
are left-censored or uncensored.

Consider these definitions in the context of the constraints in Equation 15.3. The first
constraint ensures the hyperplane is greater than some lower-bound created by subtracting
the slack parameter from the true outcome – given the set definitions above this constraint
only has meaning for observations with a finite lower-bound, i ∈ L, otherwise the constraint
would include g(xi) ≥ −∞, which is clearly not useful. Similarly the second constraint
ensures the hyperplane is less than some upper-bound, which again can only be meaningful
for observations i ∈ U . Restricting the constraints in this way leads to the optimization
problem (Shivaswamy, Chu, and Jansche 2007) below and visualised in Figure 15.3:

min
β,α,ξ′,ξ∗

1
2∥β∥

2 + C
(∑

i∈U
ξi +

∑
i∈L

ξ∗
i

)

subject to


g(xi) ≥ ti − ξ′

i, i ∈ L
g(xi) ≤ ti + ξ∗

i , i ∈ U
ξ′

i ≥ 0,∀i ∈ L; ξ∗
i ≥ 0,∀i ∈ U

If no observations are censored then the optimization becomes the regression optimization
in (Equation 15.1). Note that in SSVMs, the ϵ parameters are typically removed to better
accommodate censoring and to help prevent the same penalization of over- and under-
predictions. In contrast to this formulation, one could introduce more ϵ and C parameters
to separate between under- and over-predictions and to separate right- and left-censoring,
however this leads to eight tunable hyperparameters, which is inefficient and may increase
overfitting (Fouodo et al. 2018; Land et al. 2011). The algorithm can be simplified to
right-censoring only by removing the second constraint completely for anyone censored:

min
β,α,ξ′,ξ∗

1
2∥β∥

2 + C

n∑
i=1

(ξ′
i + ξ∗

i )

subject to


g(xi) ≥ ti − ξ∗

i

g(xi) ≤ ti + ξ′
i, i : δi = 1

ξ′
i, ξ∗

i ≥ 0

∀i ∈ 1, ..., n. With the prediction for a new observation x∗ calculated as,

ĝ(x∗) =
n∑

i=1
µ∗

i K(xi, x∗)− δiµ
′
iK(xi, x∗) + α

Where again K is a kernel function and the calculation of the Lagrange multipliers is beyond
the scope of this book.

15.2.2 Ranking SSVMs
Support vector machines can be used to estimate rankings by penalizing predictions that
result in disconcordant predictions. Recall the definition of concordance from Chapter 8:
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Figure 15.3: Visualising a survival time SVM. Blue diamonds are influential support vectors,
which are uncensored or left-censored when g(x) < t or uncensored or right-censored when
g(x) > t. Red circles are non-influential observations.
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ranking predictions for a pair of comparable observations (i, j) where ti < tj ∩ δi = 1, are
called concordant if ri > rj where ri, rj are the predicted ranks for observations i and j
respectively and a higher value implies greater risk. Using the prognostic index as a ranking
prediction (Section 6.3), a pair of observations is concordant if g(xi) > g(xj) when ti < tj ,
leading to:

min
β,α,ξ

1
2∥β∥

2 + γ

n∑
i=1

ξi

subject to
{

g(xi)− g(xj) ≥ ξi, ∀i, j ∈ CP

ξi ≥ 0, i = 1, ..., n

where CP is the set of comparable pairs defined by CP = {(i, j) : ti < tj ∧ δi = 1}. Given
the number of pairs, the optimization problem quickly becomes difficult to solve with a very
long runtime. To solve this problem Van Belle et al. (2011) found an efficient reduction that
sorts observations in order of outcome time and then compares each data point i with the
observation that has the next smallest survival time, skipping over censored observations,
in maths: j(i) := arg maxj∈1,...,n{tj : tj < ti}. This is visualized in Figure 15.4 where six
observations are sorted by outcome time from smallest (left) to largest (right). Starting
from right to left, the first pair is made by matching the observation to the first uncensored
outcome to the left, this continues to the end. In order for all observations to be used in
the optimisation, the algorithm sets the first outcome to be uncensored hence observation 2
being compared to observation 1.

Using this reduction, the algorithm becomes

min
β,α,ξ

1
2∥β∥

2 + γ

n∑
i=1

ξi

subject to
{

g(xi)− g(xj(i)) ≥ ti − tj(i) − ξi

ξi ≥ 0

∀i = 1, ..., n. Note the updated right hand side of the constraint, which plays a similar role
to the ϵ parameter by allowing ‘mistakes’ in predictions without penalty.

Predictions for a new observation x∗ are calculated as,

ĝ(x∗) =
n∑

i=1
µi(K(xi, x∗)−K(xj(i), x∗)) + α

Where µi are again Lagrange multipliers.

15.2.3 Hybrid SSVMs
Finally, Van Belle et al. (2011) noted that the ranking algorithm could be updated to add the
constraints of the regression model, thus providing a model that simultaneously optimizes
for ranking whilst providing continuous values that can be interpreted as survival time
predictions. This results in the hybrid SSVM with constraints ∀i = 1, ..., n:
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Figure 15.4: Van Belle SVM nearest neighbors reduction. Sorted observations are paired
with the nearest uncensored outcome ‘to the left’. Red squares are uncensored observations
and blue circles are censored. The observation with the smallest outcome time is always
treated as uncensored.
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min
β,α,ξ,ξ′,ξ∗

1
2∥β∥

2 + γ

n∑
i=1

ξi + C

n∑
i=1

(ξ′
i + ξ∗

i )

subject to


g(xi)− g(xj(i)) ≥ ti − tj(i) − ξi

g(xi) ≤ ti + ξ∗
i , i : δi = 1

g(xi) ≥ ti − ξ′
i

ξi, ξ′
i, ξ∗

i ≥ 0

The blue parts of the equation make up the ranking model and the red parts are the
regression model. γ is the penalty associated with the regression method and C is the penalty
associated with the ranking method. Setting γ = 0 results in the regression SVM and C = 0
results in the ranking SSVM. Hence, fitting the hybrid model and tuning these parameters
is an efficient way to automatically detect which SSVM is best suited to a given task.

Once the model is fit, a prediction from given features x∗ ∈ Rp, can be made using the
equation below, again with the ranking and regression contributions highlighted in blue and
red respectively.

ĝ(x∗) =
n∑

i=1
µi(K(xi, x∗)−K(xj(i), x∗)) + µ∗

i K(xi, x∗)− δiµ
′
iK(xi, x∗) + α

where µi, µ∗
i , µ′

i are Lagrange multipliers and K is a chosen kernel function, which may have
further hyper-parameters to select or tune.

15.3 Conclusion

Key takeaways

• Support vector machines (SVMs) are a highly flexible machine learning method that
can use the ‘kernel trick’ to represent infinite dimensional spaces in finite domains;

• Survival SVMs (SSVMs) extend regression SVMs by either making survival time
predictions, ranking predictions, or a combination of the two;

• The hybrid SSVM provides an efficient method that encapsulates all the elements of
regression and ranking SSVMs and is therefore a good model to include in benchmark
experiments to test the potential of SSVMs.

Limitations

• SSVMs can only perform well with extensive tuning of hyper-parameters over a wide
parameter space. To-date, no papers have experimented with the tuning range for
the γ and C parameters, we note (Fouodo et al. 2018) tune over (2−5, 25).

• Even using the regression or hybrid model, the authors’ experiments with the SSVM
have consistently shown ‘survival time’ estimates tend to be unrealistically large.

• Due to the above limitation, regression estimates cannot be meaningful interpreted
and as a consequence there is no sensible composition to create a distribution
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prediction from an SSVM. Hence, we are hesitant to suggest usage of SSVMs outside
of ranking-based problems.

Further reading

• Shivaswamy, Chu, and Jansche (2007), Khan and Bayer Zubek (2008), Land et al.
(2011), and Van Belle et al. (2011) to learn more about regression SSVMs.

• Evers and Messow (2008), Van Belle et al. (2007), Van Belle et al. (2008), and Van
Belle et al. (2011) for more information about ranking SSVMs.

• Goli, Mahjub, Faradmal, and Soltanian (2016) and Goli, Mahjub, Faradmal,
Mashayekhi, et al. (2016) introduce mean residual lifetime optimization SSVMs.

• Fouodo et al. (2018) surveys and benchmarks SSVMs.
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TODO (150-200 WORDS)

, Major changes expected!
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Boosting is a machine learning strategy that can be applied to any model class. Similarly to
random forests, boosting is an ensemble method that creates a model from a ‘committee’ of
learners. The committee is formed of weak learners that make poor predictions individually,
which creates a slow learning approach (as opposed to ‘greedy’) that requires many iterations
for a model to be a good fit to the data. Boosting models are similar to random forests in
that both make predictions from a large committee of learners. However the two differ in
how the members of the committee are correlated and in how they are combined to make a
prediction. In random forests, each decision tree is grown independently and their predictions
are combined by a simple mean calculation. In contrast, weak learners in a boosting model
are fit sequentially with errors from one learner used to train the next, predictions are then
made by a linear combination of predictions from each learner (Figure 16.1).

16.1 GBMs for Regression
One of the earliest boosting algorithms is AdaBoost (Freund and Schapire 1996), which
is more generally a Forward Stagewise Additive Model (FSAM) with an exponential loss
(Hastie, Tibshirani, and Friedman 2001). Today, the most widely used boosting model is the
Gradient Boosting Machine (GBM) (J. H. Friedman 2001) or extensions thereof.

Figure 16.1 illustrates the process of training a GBM in a least-squares regression setting:

1. A weak learner, f1, often a decision tree of shallow depth is fit on the training
data (X, y).

2. Predictions from the learner, f1(X), are compared to the ground truth, y, and
the residuals are calculated as r1 = f1(X)− y.

3. The next weak learner, f2, uses the previous residuals for the target prediction,
(X, r1)

4. This is repeated to train M learners, f1, ..., fM

Predictions are then made as ŷ = f1(X) + f2(X) + ... + fM (X).
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Figure 16.1: Least squares regression Boosting algorithm where the gradient is calculated as
the difference between ground truth and predictions.

This is a simplification of the general gradient boosting algorithm, where the residuals are
used to train the next model. More generally, a suitable, differentiable loss function relating
to the problem of interest is chosen and the negative gradient is computed by comparing the
predictions in each iteration with the ground truth. Residuals can be used in the regression
case as these are proportional to the negative gradient of the mean squared error.

The algorithm above is also a simplification as no hyper-parameters other than M were
included for controlling the algorithm. In order to reduce overfitting, three common hyper-
parameters are utilised:

Number of iterations, M : The number of iterations is often claimed to be the most
important hyper-parameter in GBMs and it has been demonstrated that as the number of
iterations increases, so too does the model performance (with respect to a given loss on test
data) up to a certain point of overfitting (Buhlmann 2006; Hastie, Tibshirani, and Friedman
2001; Schmid and Hothorn 2008a). This makes sense as the foundation of boosting rests on
the idea that weak learners can slowly be combined to form a single powerful model. Finding
the optimal value of M is critical as a value too small will result in poor predictions, whilst
a value too large will result in model overfitting.

Subsampling proportion, ϕ: Sampling a fraction, ϕ, of the training data at each iteration
can improve performance and reduce runtime (Hastie, Tibshirani, and Friedman 2001),
with ϕ = 0.5 often used. Motivated by the success of bagging in random forests, stochastic
gradient boosting (J. Friedman 1999) randomly samples the data in each iteration. It appears
that subsampling performs best when also combined with shrinkage (Hastie, Tibshirani, and
Friedman 2001) and as with the other hyper-parameters, selection of ϕ is usually performed
by nested cross-validation.

Step-size, ν: The step-size parameter is a shrinkage parameter that controls the contribution
of each weak learner at each iteration. Several studies have demonstrated that GBMs perform
better when shrinkage is applied and a value of ν = 0.1 is often suggested (Buhlmann and
Hothorn 2007; Hastie, Tibshirani, and Friedman 2001; J. H. Friedman 2001; D. K. K. Lee,
Chen, and Ishwaran 2019; Schmid and Hothorn 2008a). The optimal values of ν and M
depend on each other, such that smaller values of ν require larger values of M , and vice
versa. This is intuitive as smaller ν results in a slower learning algorithm and therefore more
iterations are required to fit the model. Accurately selecting the M parameter is generally
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considered to be of more importance, and therefore a value of ν is often chosen heuristically
(e.g. the common value of 0.1) and then M is tuned by cross-validation and/or early-stopping,
which is the process of monitoring the model’s training performance and stopping when a
set performance is reached or when performance stagnates (i.e., no improvement over a set
number of rounds).

As well as these parameters, the underlying weak learner hyper-parameters are also commonly
tuned. If using a decision tree, then it is usual to restrict the number of terminal nodes in the
tree to be between 4 and 8, which corresponds to two or three splits in the tree. Including
these hyper-parameters, the general gradient boosting machine algorithm is as follows:

1. g0 ← Initial guess
2. For m = 1, ..., M :
3. D∗

train ← Randomly sample Dtrain with probability ϕ

4. rim ← −[ ∂L(yi,gm−1(Xi))
∂gm−1(Xi) ], ∀i ∈ {i : Xi ∈ D∗

train}
5. Fit a weak learner, hm, to (X, rm)
6. gm ← gm−1 + νhm

7. end For
8. return ĝ = gM

Note:

1. The initial guess, g0, is often the mean of y for regression problems but can also
simply be 0.

2. Line 4 is the calculation of the negative gradient, which is equivalent to calculating
the residuals in a regression problem with the mean squared error loss.

3. Lines 5-6 differ between implementations, with some fitting multiple weak learners
and selecting the one that minimizes a simple optimization problem. The version
above is simplest to implement and quickest to run, whilst still providing good
model performance.

Once the model is trained, predictions are made for new data, Xtest with

Ŷ = ĝ(Xtest) = g0(Xtest) + ν

M∑
i=1

gi(Xtest)

GBMs provide a flexible, modular algorithm, primarily comprised of a differentiable loss to
minimise, L, and the selection of weak learners. This chapter focuses on tree-based weak
learners, though other weak learners are possible. Perhaps the most common alternatives are
linear least squares (J. H. Friedman 2001) and smoothing splines (Bühlmann and Yu 2003),
we will not discuss these further here as decision trees are primarily used for survival analysis,
due the flexibility demonstrated in Chapter 14. See references at the end of the chapter
for other weak learners. Extension to survival analysis therefore follows by considering
alternative losses.
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16.2 GBMs for Survival Analysis
Unlike other machine learning algorithms that historically ignored survival analysis, early
GBM papers considered boosting in a survival context (Ridgeway 1999); though there
appears to be a decade gap before further considerations were made in the survival setting.
After that period, developments, discussed in this chapter, by Binder, Schmid, and Hothorn,
adapted GBMs to a framework suitable for survival analysis.

All survival GBMs make ranking predictions and none are able to directly predict survival
distributions. However, depending on the underlying model, the predictions may be indirectly
composed into a survival distribution, for example algorithms that assume a proportional
hazards (PH) or accelerated failure time (AFT) form. This section starts with those models
with simpler underlying forms, then explores more complex alternatives.

16.2.1 PH and AFT GBMs
The negative log-likelihood of the semi-parametric PH and fully-parametric AFT models
can be derived from the (partial) likelihoods presented in ?@sec-surv-obj. Given the
likelihoods measure the goodness of fit of model parameters, algorithms that use these losses
use boosting to train the model coefficients, β, hence at each iteration in the algorithm,
gm(xi) = xiβ

(m), where β(m) are the updated coefficients in iteration m.

The Cox partial likelihood (Cox 1972, 1975) is given by

LP H(β) =
n∏

i:δi=1

exp(ηi)∑n
j∈Rti

exp(ηj)

with corresponding negative log-likelihood

−lP H(β) = −
n∑

i=1
δi

[
ηi − log

( n∑
j∈Rti

exp(ηi)
)]

(16.1)

where Rti
is the set of patients at risk at time ti and ηi = xiβ.

The gradient of −lP H at iteration m is then

rim := δi −
n∑

j=1
δj
I(ti ≥ tj) exp(gm−1(xi))∑

k∈Rtj
exp(gm−1(xk)) (16.2)

where gm−1(xi) = xiβ
(m−1).

For non-PH data, boosting an AFT model can outperform boosted PH models (Schmid and
Hothorn 2008b). The AFT is defined by

log y = η + σW

where W is a random noise variable independent of X, and σ is a scale parameter controlling
the amount of noise; again η = Xβ. By assuming a distribution on W , a distribution is
assumed for the full parametric model. The model is boosted by simultaneously estimating
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σ and β. Assuming a location-scale distribution with location g(xi) and scale σ, one can
derive the negative log-likelihood in the mth iteration as (Klein and Moeschberger 2003)

−lAF T
m (β) = −

n∑
i=1

δi

[
− log σ + log fW

( log(ti)− ĝm−1(xi)
σ̂m−1

)]
+

(1− δi)
[

log SW

( log(ti)− ĝm−1(xi)
σ̂m−1

)]
where ĝm−1, σ̂m−1 are the location-scale parameters estimated in the previous iteration.
Note this key difference to other GBM methods in which two estimates are made in each
iteration step. After updating ĝm, the scale parameter, σ̂m, is updated as

σ̂m := arg min
σ

−lAF T
m (β)

σ0 is commonly initialized as 1 (Schmid and Hothorn 2008b).

As well as boosting fully-parametric AFTs, one could also consider boosting semi-parametric
AFTs, for example using the Gehan loss (Johnson and Long 2011) or using Buckley-James
imputation (Z. Wang and Wang 2010). However, known problems with semi-parametric
AFT models and the Buckey-James procedure (Wei 1992), as well as a lack of off-shelf
implementation, mean that these methods are rarely used in practice.

16.2.2 Discrimination Boosting
Instead of optimising models based on a given model form, one could instead estimate η̂ by
optimizing a concordance index, such as Uno’s or Harrell’s C (Y. Chen et al. 2013; Mayr
and Schmid 2014). Consider Uno’s C (Section 8.1):

CU (ĝ,Dtrain) =
∑

i̸=j δi{ĜKM (ti)}−2I(ti < tj)I(ĝ(xi) > ĝ(xj))∑
i̸=j δi{ĜKM (ti)}−2I(ti < tj)

The GBM algorithm requires that the chosen loss, here CU , be differentiable with respect to
ĝ(X), which is not the case here due to the indicator term, I(ĝ(Xi) > ĝ(Xj)), however this
term can be replaced with a sigmoid function to create a differentiable loss (Ma and Huang
2006)

K(u|ω) = 1
1 + exp(−u/ω)

where ω is a tunable hyper-parameter controlling the smoothness of the approximation. The
measure to optimise is then,

CUSmooth(β|ω) =
∑
i̸=j

kij

1 + exp
[
(ĝ(Xj)− ĝ(Xi))/ω)

] (16.3)

with

kij = ∆i(ĜKM (Ti))−2I(Ti < Tj)∑
i̸=j ∆i(ĜKM (Ti))−2I(Ti < Tj)
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The negative gradient at iteration m for observation i is then calculated as,

rim := −
n∑

j=1
kij

− exp( ĝm−1(xj)−ĝm−1(xi)
ω )

ω(1 + exp( ĝm−1(xj)−ĝm−1(xi)
ω ))

(16.4)

The GBM algorithm is then followed as normal with the above loss and gradient. This
algorithm may be more insensitive to overfitting than others (Mayr, Hofner, and Schmid
2016), however stability selection (Meinshausen and Bühlmann 2010), which is implemented
in off-shelf software packages (Hothorn et al. 2020), can be considered for variable selection.

16.2.3 CoxBoost
Finally, ‘CoxBoost’ is an alternative method to boost Cox models and has been demonstrated
to perform well in experiments. This algorithm boosts the Cox PH by optimising the penalized
partial-log likelihood; additionally the algorithm allows for mandatory (or ‘forced’) covariates
(Binder and Schumacher 2008). In medical domains the inclusion of mandatory covariates
may be essential, either for model interpretability, or due to prior expert knowledge. CoxBoost
deviates from the algorithm presented above by instead using an offset-based approach for
generalized linear models (Tutz and Binder 2007).

Let I = {1, ..., p} be the indices of the covariates, let Imand be the indices of the mandatory
covariates that must be included in all iterations, and let Iopt = I \ Imand be the indices
of the optional covariates that may be included in any iteration. In the mth iteration, the
algorithm fits a weak learner on all mandatory covariates and one optional covariate:

Im = Imand ∪ {x|x ∈ Iopt}

In addition, a penalty matrix P ∈ Rp×p is considered such that Pii > 0 implies that
covariate i is penalized and Pii = 0 means no penalization. In practice, this is usually
a diagonal matrix (Binder and Schumacher 2008) and by setting Pii = 0, i ∈ Imand and
Pii > 0, i ̸∈ Imand, only optional (non-mandatory) covariates are penalized. The penalty
matrix can be allowed to vary with each iteration, which allows for a highly flexible approach,
however in implementation a simpler approach is to either select a single penalty to be
applied in each iteration step or to have a single penalty matrix (Binder 2013).

At the mth iteration and the kth set of indices to consider (k = 1, ..., p), the loss to optimize
is the penalized partial-log likelihood given by

lpen(γmk) =
n∑

i=1
δi

[
ηi,m−1 + xi,Imk

γ⊤
mk

]
−

δi log
( n∑

j=1
I(tj ≤ ti) exp(ηi,m−1 + xi,Imk

γ⊤
mk

)
− λγmkPmkγ⊤

mk

where ηi,m = xiβm, γmk are the coefficients corresponding to the covariates in Imk which is
the possible set of candidates for a subset of total candidates k = 1, ..., p; Pmk is the penalty
matrix; and λ is a penalty hyper-parameter to be tuned or selected.1

1On notation, note that Pij refers to the penalty matrix in the ith iteration for the jth set of indices,
whereas Pij is the (i, j)th element in the matrix P.
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In each iteration, all potential candidate sets (the union of mandatory covariates and one
other covariate) are updated by

γ̂mk = I−1
pen(γ̂(m−1)k)U(γ̂(m−1)k)

where U(γ) = ∂l/∂γ(γ) and I−1
pen = ∂2l/∂γ∂γT (γ + λP(m−1)k) are the first and second

derivatives of the unpenalized partial-log-likelihood. The optimal set is then found as

k∗ := arg max
k

lpen(γ̂mk)

and the estimated coefficients are updated with

β̂m = β̂m−1 + γ̂mk∗ , k∗ ∈ Imk

This deviates from the standard GBM algorithm by directly optimizing lpen and not its
gradient, additionally model coefficients are iteratively updated instead of a more general
model form.

16.3 Conclusion

Key takeaways

• GBMs are a highly flexible and powerful machine learning tool. They have proven
particularly useful in survival analysis as minimal adjustments are required to make
use of off-shelf software.

• The flexibility of the algorithm allows all the models above to be implemented in
relatively few open-source packages.

• There is evidence that boosting models can outperform the Cox PH even in low-
dimensional settings (Schmid and Hothorn 2008b), which is not not something all
ML models can claim.

Limitations

• Boosting, especially with tree learners, is viewed as a black-box model that is
increasingly difficult to interpret as the number of iterations increase. However, there
are several methods for increasing interpretability, such as variable importance and
SHAPs (Lundberg and Lee 2017).

• Boosting often relies on intensive computing power, however, dedicated packages
such as xgboost (T. Chen et al. 2020), exist to push CPU/GPUs to their limits in
order to optimise predictive performance.

Further reading

• Bühlmann and Yu (2003); Hothorn et al. (2020); Z. Wang and Wang (2010) for more
general information and background on componentwise GBMs

• J. H. Friedman (2001); Z. Wang and Wang (2010) for linear least squares weak
learners
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• Bühlmann and Yu (2003); J. H. Friedman (2001) for decision tree weak learners
• Ridgeway (1999) for early research into GBMs for survival analysis
• Johnson and Long (2011) and Z. Wang and Wang (2010) for semi-parametric AFT

boosting
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17.1 Neural Networks
Before starting the survey on neural networks, first a comment about their transparency and
accessibility. Neural networks are infamously difficult to interpret and train, with some calling
building and training neural networks an ‘art’ (Hastie, Tibshirani, and Friedman 2001). As
discussed in the introduction of this book, whilst neural networks are not transparent with
respect to their predictions, they are transparent with respect to implementation. In fact
the simplest form of neural network, as seen below, is no more complex than a simple linear
model. With regard to accessibility, whilst it is true that defining a custom neural network
architecture is complex and highly subjective, established models are implemented with a
default architecture and are therefore accessible ‘off-shelf’.

17.1.1 Neural Networks for Regression
(Artificial) Neural networks (ANNs) are a class of model that fall within the greater paradigm
of deep learning. The simplest form of ANN, a feed-forward single-hidden-layer network, is
a relatively simple algorithm that relies on linear models, basic activation functions, and
simple derivatives. A short introduction to feed-forward regression ANNs is provided to
motivate the survival models. This focuses on single-hidden-layer models and increasing this
to multiple hidden layers follows relatively simply.

The single hidden-layer network is defined through three equations

Zm = σ(α0m + αT
mXi), m = 1, ..., M

T = β0k + βT
k Z, k = 1, .., K

gk(Xi) = ϕk(T )

where (X1, ..., Xn) i.i.d.∼ X are the usual training data, α0m, β0 are bias parameters, and
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θ = {αm, β} (m = 1, .., , M) are model weights where M is the number of hidden units. K
is the number of classes in the output, which for regression is usually K = 1. The function
ϕ is a ‘link’ or ‘activation function’, which transforms the predictions in order to provide
an outcome of the correct return type; usually in regression, ϕ(x) = x. σ is the ‘activation
function’, which transforms outputs from each layer. The αm parameters are often referred
to as ‘activations’. Different activation functions may be used in each layer or the same used
throughout, the choice is down to expert knowledge. Common activation functions seen in
this section include the sigmoid function,

σ(v) = (1 + exp(−v))−1

tanh function,
σ(v) = exp(v)− exp(−v)

exp(v) + exp(−v) (17.1)

and ReLU (Nair and Hinton 2010)
σ(v) = max(0, v) (17.2)

A single-hidden-layer model can also be expressed in a single equation, which highlights the
relative simplicity of what may appear a complex algorithm.

gk(Xi) = σ0(βk0 +
H∑

h=1
(βkhσh(βh0 +

M∑
m=1

βhmXi;m)) (17.3)

where H are the number of hidden units, β are the model weights, σh is the activation
function in unit h, also σ0 is the output unit activation, and Xi;m is the ith observation
features in the mth hidden unit.

An example feed-forward single-hidden-layer regression ANN is displayed in (Figure 17.1).
This model has 10 input units, 13 hidden units, and one output unit; two bias parameters
are fit. The model is described as ‘feed-forward’ as there are no cycles in the node and
information is passed forward from the input nodes (left) to the output node (right).

Back-Propagation

The model weights, θ, in this section are commonly fit by ‘back-propagation’ although
this method is often considered inefficient compared to more recent advances. A brief
pseudo-algorithm for the process is provided below.

Let L be a chosen loss function for model fitting, let θ = (α, β) be model weights, and let
J ∈ N>0 be the number of iterations to train the model over. Then the back-propagation
method is given by,

• For j = 1, ..., J : [] Forward Pass [i.] Fix weights θ(j−1). [ii.] Compute predictions Ŷ :=
ĝ

(j)
k (Xi|θ(j−1)) with (Equation 17.3). [] Backward Pass [iii.] Calculate the gradients of the

loss L(Ŷ |Dtrain). [] Update *[iv.] Update α(r), β(r) with gradient descent.
• End For

In regression, a common choice for L is the squared loss,

L(ĝ, θ|Dtrain) =
n∑

i=1
(Yi − ĝ(Xi|θ))2

which may help illustrate how the training outcome, (Y1, ..., Yn) i.i.d.∼ Y , is utilised for model
fitting.
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Figure 17.1: Single-hidden-layer artificial neural network with 13 hidden units fit on the
mtcars (Henderson and Velleman 1981) dataset using the nnet (N. Venables and D. Ripley
2002) package, and gamlss.add (Stasinopoulos et al. 2020) for plotting. Left column are
input variables, I1-I10, second column are 13 hidden units, H1-H13, right column is single
output variable, O1. B1 and B2 are bias parameters.
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Making Predictions

Once the model is fitted, predictions for new data follow by passing the testing data as
inputs to the model with fitted weights,

gk(X∗) = σ0(β̂k0 +
H∑

h=1
(β̂khσh(β̂h0 +

M∑
m=1

β̂hmX∗
m))

Hyper-Parameters

In practice, a regularization parameter, λ, is usually added to the loss function in order to
help avoid overfitting. This parameter has the effect of shrinking model weights towards zero
and hence in the context of ANNs regularization is usually referred to as ‘weight decay’. The
value of λ is one of three important hyper-parameters in all ANNs, the other two are: the
range of values to simulate initial weights from, and the number of hidden units, M .

The range of values for initial weights is usually not tuned but instead a consistent range
is specified and the neural network is trained multiple times to account for randomness in
initialization.

The regularization parameter and number of hidden units, M , depend on each other and
have a similar relationship to the learning rate and number of iterations in the GBMs
(?@sec-surv-ml-models-boost). Like the GBMs, it is simplest to set a high number of
hidden units and then tune the regularization parameter (Bishop 2006; Hastie, Tibshirani,
and Friedman 2001). Determining how many hidden layers to include, and how to connect
them, is informed by expert knowledge and well beyond the scope of this book; decades of
research has been required to derive sensible new configurations.

Training Batches

ANNs can either be trained using complete data, in batches, or online. This decision is
usually data-driven and will affect the maximum number of iterations used to train the
algorithm; as such this will also often be chosen by expert-knowledge and not empirical
methods such as cross-validation.

Neural Terminology

Neural network terminology often reflects the structures of the brain. Therefore ANN units
are referred to as nodes or neurons and sometimes the connections between neurons are
referred to as synapses. Neurons are said to be ‘fired’ if they are ‘activated’. The simplest
example of activating a neuron is with the Heaviside activation function with a threshold of
0: σ(v) = I(v ≥ 0). Then a node is activated and passes its output to the next layer if its
value is positive, otherwise it contributes no value to the next layer.

17.1.2 Neural Networks for Survival Analysis
Surveying neural networks is a non-trivial task as there has been a long history in machine
learning of publishing very specific data-driven neural networks with limited applications;
this is also true in survival analysis. This does mean however that where limited developments
for survival were made in other machine learning classes, ANN survival adaptations have
been around for several decades. A review in 2000 by Schwarzer et al. surveyed 43 ANNs
for diagnosis and prognosis published in the first half of the 90s, however only up to ten



Neural Networks 147

of these are specifically for survival data.1 Of those, Schwarzer et al. deemed three to be
‘na"ive applications to survival data’, and recommended for future research models developed
by Liestøl et al. (1994) (Liestol, Andersen, and Andersen 1994), Faraggi and Simon (1995)
(Faraggi and Simon 1995), and Biganzoli et al. (1998) (E. Biganzoli et al. 1998).

This survey will not be as comprehensive as the 2000 survey, and nor has any survey since,
although there have been several ANN reviews (B. D. Ripley and Ripley 2001; Huang et al.
2020b; Ohno-Machado 1996; Yang 2010; W. Zhu et al. 2020). ANNs are considered to be a
black-box model, with interpretability decreasing steeply as the number of hidden layers
and nodes increases. In terms of accessibility there have been relatively few open-source
packages developed for survival ANNs; where these are available the focus has historically
been in Python, with no R implementations. The new survivalmodels (R. Sonabend 2020)
package,2 implements these Python models via reticulate (Ushey, Allaire, and Tang 2020).
No recurrent neural netwoks are included in this survey though the survival models SRN (Oh
et al. 2018) and RNN-Surv (Giunchiglia, Nemchenko, and Schaar 2018) are acknowledged.

This survey is made slightly more difficult as neural networks are often proposed for many
different tasks, which are not necessarily clearly advertised in a paper’s title or abstract.
For example, many papers claim to use neural networks for survival analysis and make
comparisons to Cox models, whereas the task tends to be death at a particular (usually
5-year) time-point (classification) (I. Han et al. 2018; Lundin et al. 1999; B. D. Ripley
and Ripley 2001; R. M. Ripley, Harris, and Tarassenko 1998; Huseyin Seker et al. 2002),
which is often not made clear until mid-way through the paper. Reviews and surveys have
also conflated these different tasks, for example a very recent review concluded superior
performance of ANNs over Cox models, when in fact this is only in classification (Huang
et al. 2020a) (RM2) {sec:car_reduxstrats_mistakes}. To clarify, this form of classification
task does fall into the general field of survival analysis, but not the survival task ((box-
task-surv?)). Therefore this is not a comment on the classification task but a reason for
omitting these models from this survey.

Using ANNs for feature selection (often in gene expression data) and computer vision is also
very common in survival analysis, and indeed it is in this area that most success has been
seen (Bello et al. 2019; Y.-C. Chen, Ke, and Chiu 2014; Cui et al. 2020; Lao et al. 2017;
McKinney et al. 2020; Rietschel, Yoon, and Schaar 2018; H. Seker et al. 2002; Zhang et al.
2020; X. Zhu, Yao, and Huang 2016), but these are again beyond the scope of this survey.

The key difference between neural networks is in their output layer, required data transfor-
mations, the model prediction, and the loss function used to fit the model. Therefore the
following are discussed for each of the surveyed models: the loss function for training, L, the
model prediction type, ĝ, and any required data transformation. Notation is continued from
the previous surveys with the addition of θ denoting model weights (which will be different
for each model).

17.1.2.1 Probabilistic Survival Models

Unlike other classes of machine learning models, the focus in ANNs has been on probabilistic
models. The vast majority make these predictions via reduction to binary classification ??.
Whilst almost all of these networks implicitly reduce the problem to classification, most
are not transparent in exactly how they do so and none provide clear or detailed interface
points in implementation allowing for control over this reduction. Most importantly, the

1Schwarzer conflates the prognosis and survival task, therefore it is not clear if all 10 of these are for
time-to-event data (at least five definitely are).

2Created in order to run the experiments in [@Sonabend2021b].
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majority of these models do not detail how valid survival predictions are derived from the
binary setting,3 which is not just a theoretical problem as some implementations, such as
the Logistic-Hazard model in pycox (Kvamme 2018), have been observed to make survival
predictions outside the range [0, 1]. This is not a statement about the performance of models
in this section but a remark about the lack of transparency across all probabilistic ANNs.

Many of these algorithms use an approach that formulate the Cox PH as a non-linear model
and minimise the partial likelihood. These are referred to as ‘neural-Cox’ models and the
earliest appears to have been developed by Faraggi and Simon (Faraggi and Simon 1995). All
these models are technically composites that first predict a ranking, however they assume a
PH form and in implementation they all appear to return a probabilistic prediction.

ANN-COX {#mod-anncox}\ Faraggi and Simon (Faraggi and Simon 1995) proposed a
non-linear PH model

h(τ |Xi, θ) = h0(τ) exp(ϕ(Xiβ)) (17.4)

where ϕ is the sigmoid function and θ = {β} are model weights. This model, ‘ANN-COX’,
estimates the prediction functional, ĝ(X∗) = ϕ(X∗β̂). The model is trained with the partial-
likelihood function

L(ĝ, θ|Dtrain) =
n∏

i=1

exp(
∑M

m=1 αmĝm(X∗))∑
j∈Rti

exp(
∑M

m=1 αmĝm(X∗))

where Rti
is the risk group alive at ti; M is the number of hidden units; ĝm(X∗) =

(1 + exp(−X∗β̂m))−1; and θ = {β, α} are model weights.

The authors proposed a single hidden layer network, trained using back-propagation and
weight optimisation with Newton-Raphson. This architecture did not outerperform a Cox
PH (Faraggi and Simon 1995). Further adjustments including (now standard) pre-processing
and hyper-parameter tuning did not improve the model performance (Mariani et al. 1997).
Further independent studies demonstrated worse performance than the Cox model (Faraggi
and Simon 1995; Xiang et al. 2000).

COX-NNET {#mod-coxnnet}\ COX-NNET (Ching, Zhu, and Garmire 2018) updates the
ANN-COX by instead maximising the regularized partial log-likelihood

L(ĝ, θ|Dtrain, λ) =
n∑

i=1
∆i

[
ĝ(Xi) − log

( ∑
j∈Rti

exp(ĝ(Xj))
)]

+ λ(∥β∥2 + ∥w∥2)

with weights θ = (β, w) and where ĝ(Xi) = σ(wXi + b)T β for bias term b, and activation
function σ; σ is chosen to be the tanh function ((Equation 17.1)). In addition to weight
decay, dropout (Srivastava et al. 2014) is employed to prevent overfitting. Dropout can be
thought of as a similar concept to the variable selection in random forests, as each node is
randomly deactivated with probability p, where p is a hyper-parameter to be tuned.

Independent simulation studies suggest that COX-NNET does not outperform the Cox PH
(Michael F. Gensheimer and Narasimhan 2019).

DeepSurv {#mod-deepsurv}\ DeepSurv (J. L. Katzman et al. 2018) extends these models
to deep learning with multiple hidden layers. The chosen error function is the average

3One could assume they use procedures such as those described in Tutz and Schmid (2016) [@Tutz2016]
but there is rarely transparent writing to confirm this.
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negative log-partial-likelihood with weight decay

L(ĝ, θ|Dtrain, λ) = − 1
n∗

n∑
i=1

∆i

[(
ĝ(Xi)− log

∑
j∈Rti

)

exp(ĝ(Xj)
)]

+ λ∥θ∥2
2

where n∗ :=
∑n

i=1 I(∆i = 1) is the number of uncensored observations and ĝ(Xi) = ϕ(Xi|θ)
is the same prediction object as the ANN-COX. State-of-the-art methods are used for
data pre-processing and model training. The model architecture uses a combination of
fully-connected and dropout layers. Benchmark experiments by the authors indicate that
DeepSurv can outperform the Cox PH in ranking tasks (J. Katzman et al. 2016; J. L.
Katzman et al. 2018) although independent experiments do not confirm this (Zhao and Feng
2020).
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**Cox-Time** {#mod-coxtime}\ Kvamme et al. (Kvamme, Borgan, and Scheel 2019) build
on these models by allowing time-varying effects. The loss function to minimise, with
regularization, is given by

L(ĝ, θ|Dtrain, λ) = 1
n

∑
i:∆i=1

log
( ∑

j∈Rti

exp[ĝ(Xj , Ti)− ĝ(Xi, Ti)]
)

+ λ
∑

i:∆i=1

∑
j∈Rti

|ĝ(Xj , Ti)|

where ĝ = ĝ1, ..., ĝn is the same non-linear predictor but with a time interaction and λ is
the regularization parameter. The model is trained with stochastic gradient descent and
the risk set, Rti

, in the equation above is instead reduced to batches, as opposed to the
complete dataset. ReLU activations (Nair and Hinton 2010) and dropout are employed in
training. Benchmark experiments indicate good performance of Cox-Time, though no formal
statistical comparisons are provided and hence no comment about general performance can
be made.

ANN-CDP {#mod-anncdp}\ One of the earliest ANNs that was noted by Schwarzer et al.
(Schwarzer, Vach, and Schumacher 2000) was developed by Liestøl et al. (Liestol, Andersen,
and Andersen 1994) and predicts conditional death probabilities (hence ‘ANN-CDP’). The
model first partitions the continuous survival times into disjoint intervals Ik, k = 1, ..., m such
that Ik is the interval (tk−1, tk]. The model then studies the logistic Cox model (proportional
odds) (Cox 1972) given by

pk(x)
qk(x) = exp(η + θk)

where pk = 1 − qk, θk = log(pk(0)/qk(0)) for some baseline probability of survival, qk(0),
to be estimated; η is the usual linear predictor, and qk = P (T ≥ Tk|T ≥ Tk−1) is the
conditional survival probability at time Tk given survival at time Tk−1 for k = 1, ..., K total
time intervals. A logistic activation function is used to predict ĝ(X∗) = ϕ(η + θk), which
provides an estimate for p̂k.

The model is trained on discrete censoring indicators Dki such that Dki = 1 if individual i
dies in interval Ik and 0 otherwise. Then with K output nodes and maximum likelihood
estimation to find the model parameters, η̂, the final prediction provides an estimate for the
conditional death probabilities p̂k. The negative log-likelihood to optimise is given by

L(ĝ, θ|Dtrain) =
n∑

i=1

mi∑
k=1

[Dki log(p̂k(Xi)) + (1−Dki) log(q̂k(Xi))]

where mi is the number of intervals in which observation i is not censored.

Liestøl et al.{} discuss different weighting options and how they correspond to the PH
assumption. In the most generalised case, a weight-decay type regularization is applied to
the model weights given by

α
∑

l

∑
k

(wkl − wk−1,l)2

where w are weights, and α is a hyper-parameter to be tuned, which can be used alongside
standard weight decay. This corresponds to penalizing deviations from proportionality thus
creating a model with approximate proportionality. The authors also suggest the possibility
of fixing the weights to be equal in some nodes and different in others; equal weights
strictly enforces the proportionality assumption. Their simulations found that removing
the proportionality assumption completely, or strictly enforcing it, gave inferior results.
Comparing their model to a standard Cox PH resulted in a ‘better’ negative log-likelihood,
however this is not a precise evaluation metric and an independent simulation would be
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preferred. Finally Listøl et al. included a warning “The flexibility is, however, obtained at
unquestionable costs: many parameters, difficult interpretation of the parameters and a slow
numerical procedure’ ’ (Liestol, Andersen, and Andersen 1994).

PLANN {#mod-plann}\ Biganzoli et al. (1998) (E. Biganzoli et al. 1998) studied the
same proportional-odds model as the ANN-CDP (Liestol, Andersen, and Andersen 1994).
Their model utilises partial logistic regression (Efron 1988) with added hidden nodes,
hence ‘PLANN’. Unlike ANN-CDP, PLANN predicts a smoothed hazard function by using
smoothing splines. The continuous time outcome is again discretised into disjoint intervals
tm, m = 1, ..., M . At each time-interval, tm, the number of events, dm, and number of
subjects at risk, nm, can be used to calculate the discrete hazard function,4

ĥm = dm

nm
, m = 1, ..., M (17.5)

This quantity is used as the target to train the neural network. The survival function is then
estimated by the Kaplan-Meier type estimator,

Ŝ(τ) =
∏

m:tm≤τ

(1− ĥm) (17.6)

The model is fit by employing one of the more ‘usual’ survival reduction strategies in which
an observation’s survival time is treated as a covariate in the model (Tutz and Schmid
2016). As this model uses discrete time, the survival time is discretised into one of the M
intervals. This approach removes the proportional odds constraint as interaction effects
between time and covariates can be modelled (as time-updated covariates). Again the model
makes predictions at a given time m, ϕ(θm + η), where η is the usual linear predictor, θ is
the baseline proportional odds hazard θm = log(hm(0)/(1− hm(0)). The logistic activation
provides estimates for the discrete hazard,

hm(Xi) = exp(θm + η̂)
1 + exp(θm + η̂)

which is smoothed with cubic splines (Efron 1988) that require tuning.

A cross-entropy error function is used for training

L(ĥ, θ|Dtrain, a) = −
M∑

m=1

[
ĥm log

(hl(Xi, al)
ĥm

)
+ (1− ĥm) log

(1− hl(Xi, al)
1− ĥm

)]
nm

where hl(Xi, al) is the discrete hazard hl with smoothing at mid-points al. Weight decay
can be applied and the authors suggest λ ≈ 0.01 − 0.1 (E. Biganzoli et al. 1998), though
they make use of an AIC type criterion instead of cross-validation.

This model makes smoothed hazard predictions at a given time-point, τ , by including τ
in the input covariates Xi. Therefore the model first requires transformation of the input
data by replicating all observations and replacing the single survival indicator ∆i, with a
time-dependent indicator Dik, the same approach as in ANN-CDP. Further developments
have extended the PLANN to Bayesian modelling, and for competing risks (E. M. Biganzoli,
Ambrogi, and Boracchi 2009).

No formal comparison is made to simpler model classes. The authors recommend ANNs
primarily for exploration, feature selection, and understanding underlying patterns in the
data (E. M. Biganzoli, Ambrogi, and Boracchi 2009).

4Derivation of this as a ’hazard’ estimator follows trivially by comparison to the Nelson-Aalen estimator.
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Nnet-survival {#mod-nnetsurvival}\ Aspects of the PLANN algorithm have been gen-
eralised into discrete-time survival algorithms in several papers (Michael F. Gensheimer
and Narasimhan 2019; Kvamme2019?; Mani et al. 1999; Street 1998). Various estimates
have been derived for transforming the input data to a discrete hazard or survival function.
Though only one is considered here as it is the most modern and has a natural interpretation
as the ‘usual’ Kaplan-Meier estimator for the survival function. Others by Street (1998)
(Street 1998) and Mani (1999) (Mani et al. 1999) are acknowledged. The discrete hazard esti-
mator (Equation 17.5), ĥ, is estimated and these values are used as the targets for the ANN.
For the error function, the mean negative log-likelihood for discrete time (Kvamme2019?)
is minimised to estimate ĥ,

L(ĥ, θ|Dtrain) = − 1
n

n∑
i=1

k(Ti)∑
j=1

(I(Ti = τj , ∆i = 1) log[ĥi(τj)] +

(1− I(Ti = τj , ∆i = 1)) log(1− ĥi(τj)))

where k(Ti) is the time-interval index in which observation i dies/is censored, τj is the jth
discrete time-interval, and the prediction of ĥ is obtained via

ĥ(τj |Dtrain) = [1 + exp(−ĝj(Dtrain))]−1

where ĝj is the jth output for j = 1, ..., m discrete time intervals. The number of units in the
output layer for these models corresponds to the number of discrete-time intervals. Deciding
the width of the time-intervals is an additional hyper-parameter to consider.

Gensheimer and Narasimhan’s ‘Nnet-survival’ (Michael F. Gensheimer and Narasimhan
2019) has two different implementations. The first assumes a PH form and predicts the
linear predictor in the final layer, which can then be composed to a distribution. Their
second ‘flexible’ approach instead predicts the log-odds of survival in each node, which are
then converted to a conditional probability of survival, 1− hj , in a given interval using the
sigmoid activation function. The full survival function can be derived with (Equation 17.6).
The model has been demonstrated not to outperform the Cox PH with respect to Harrell’s
C or the Graf (Brier) score (Michael F. Gensheimer and Narasimhan 2019).

PC-Hazard {#mod-pchazard}\ Kvamme and Borgan deviate from nnet-survival in their
‘PC-Hazard’ (Kvamme2019?) by first considering a discrete-time approach with a softmax
activation function influenced by multi-class classification. They expand upon this by studying
a piecewise constant hazard function in continuous time and defining the mean negative
log-likelihood as

L(ĝ, θ|Dtrain) = − 1
n

n∑
i=1

(
∆iXi log η̃k(Ti) −Xiη̃k(Ti)ρ(Ti)−

k(Ti)−1∑
j=1

η̃jXi

)
where k(Ti) and τi is the same as defined above, ρ(t) = t−τk(t)−1

∆τk(t)
, ∆τj = τj − τj−1, and

η̃j := log(1 + exp(ĝj(Xi)) where again ĝj is the jth output for j = 1, ..., m discrete time
intervals. Once the weights have been estimated, the predicted survival function is given by

Ŝ(τ, X∗|Dtrain) = exp(−X∗η̃k(τ)ρ(τ))
k(τ)−1∏

j=1
exp(−η̃j(X∗))

Benchmark experiments indicate similar performance to nnet-survival (Kvamme2019?),
an unsurprising result given their implementations are identical with the exception of the
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loss function (Kvamme2019?), which is also similar for both models. A key result found
that varying values for interval width lead to significant differences and therefore should be
carefully tuned.

DNNSurv {#mod-dnnsurv}\ A very recent (pre-print) approach (Zhao and Feng 2020)
instead first computes ‘pseudo-survival probabilities’ and uses these to train a regression ANN
with sigmoid activation and squared error loss. These pseudo-probabilities are computed
using a jackknife-style estimator given by

S̃ij(Tj+1,Rtj ) = njŜ(Tj+1|Rtj )− (nj − 1)Ŝ−i(Tj+1|Rtj )

where Ŝ is the IPCW weighted Kaplan-Meier estimator (defined below) for risk set Rtj
,

Ŝ−i is the Kaplan-Meier estimator for all observations in Rtj
excluding observation i, and

nj := |Rtj
|. The IPCW weighted Kaplan-Meier estimate is found via the IPCW Nelson-Aalen

estimator,

Ĥ(τ |Dtrain) =
n∑

i=1

∫ τ

0

I(Ti ≤ u, ∆i = 1)Ŵi(u)∑n
j=1 I(Tj ≥ u)Ŵj(u)

du

where Ŵi, Ŵj are subject specific IPC weights.

In their simulation studies, they found no improvement over other proposed neural networks.
Arguably the most interesting outcome of their paper are comparisons of multiple survival
ANNs at specific time-points, evaluated with C-index and Brier score. Their results indicate
identical performance from all models. They also provide further evidence of neural networks
not outperforming a Cox PH when the PH assumption is valid. However, in their non-PH
dataset, DNNSurv appears to outperform the Cox model (no formal tests are provided).
Data is replicated similarly to previous models except that no special indicator separates
censoring and death, this is assumed to be handled by the IPCW pseudo probabilities.

DeepHit {#mod-deephit}\ DeepHit (C. Lee et al. 2018) was originally built to accommodate
competing risks, but only the non-competing case is discussed here (Kvamme, Borgan, and
Scheel 2019). The model builds on previous approaches by discretising the continuous time
outcome, and makes use of a composite loss. It has the advantage of making no parametric
assumptions and directly predicts the probability of failure in each time-interval (which
again correspond to different terminal nodes), i.e. ĝ(τk|Dtest) = P̂ (T ∗ = τk|X∗) where again
τk, k = 1, ..., K are the distinct time intervals. The estimated survival function is found with
Ŝ(τK |X∗) = 1−

∑K
k=1 ĝi(τk|X∗). ReLU activations were used in all fully connected layers

and a softmax activation in the final layer. The losses in the composite error function are
given by

L1(ĝ, θ|Dtrain) = −
N∑

i=1
[∆i log(ĝi(Ti)) + (1−∆i) log(Ŝi(Ti))]

and
L2(ĝ, θ|Dtrain, σ) =

∑
i̸=j

∆iI(Ti < Tj)σ(Ŝi(Ti), Ŝj(Ti))

for some convex loss function σ and where ĝi(t) = ĝ(t|Xi). Again these can be seen to be
a cross-entropy loss and a ranking loss. Benchmark experiments demonstrate the model
outperforming the Cox PH and RSFs (C. Lee et al. 2018) with respect to separation, and
an independent experiment supports these findings (Kvamme, Borgan, and Scheel 2019).
However, the same independent study demonstrated worse performance than a Cox PH with
respect to the integrated Brier score (Graf et al. 1999).
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17.1.2.2 Deterministic Survival Models

Whilst the vast majority of survival ANNs have focused on probabilistic predictions (often
via ranking), a few have also tackled the deterministic or ‘hybrid’ problem.

RankDeepSurv {#mod-rankdeepsurv}\ Jing et al. (Jing et al. 2019) observed the past
two decades of research in survival ANNs and then published a completely novel solution,
RankDeepSurv, which makes predictions for the survival time T̂ = (T̂1, ..., T̂n). They proposed
a composite loss function

L(T̂ , θ|Dtrain, α, γ, λ) = αL1(T̂ , T, ∆) + γL2(T̂ , T, ∆) + λ∥θ∥2
2

where θ are the model weights, α, γ ∈ R>0, λ is the shrinkage parameter, by a slight abuse
of notation T = (T1, ..., Tn) and ∆ = (∆1, ..., ∆n), and

L1(T̂ , θ|Dtrain) = 1
n

∑
{i:I(i)=1}

(T̂i − Ti)2; I(i) =
{

1, ∆i = 1 ∪ (∆i = 0 ∩ T̂i ≤ Ti)
0, otherwise

L2(T̂ , θ|Dtrain) = 1
n

n∑
{i,j:I(i,j)=1}

[(Tj − Ti)− (T̂j − T̂i)]2; I(i, j) =
{

1, Tj − Ti > T̂j − T̂i

0, otherwise

where T̂i is the predicted survival time for observation i. A clear contrast can be made
between these loss functions and the constraints used in SSVM-Hybrid (Van Belle et al.
2011) (Section 15.2). L1 is the squared second constraint in 15.2.3 and L2 is the squared
first constraint in 15.2.3. However L1 in RankDeepSurv discards the squared error difference
for all censored observations when the prediction is lower than the observed survival time;
which is problematic as if someone is censored at time Ti then it is guaranteed that their
true survival time is greater than Ti (this constraint may be more sensible if the inequality
were reversed). An advantage to this loss is, like the SSVM-Hybrid, it enables a survival
time interpretation for a ranking optimised model; however these ‘survival times’ should be
interpreted with care.

The authors propose a model architecture with several fully connected layers with the ELU
(Clevert, Unterthiner, and Hochreiter 2015) activation function and a single dropout layer.
Determining the success of this model is not straightforward. The authors claim superiority
of RankDeepSurv over Cox PH, DeepSurv, and RSFs however this is an unclear comparison
(RM2) {sec:car_reduxstrats_mistakes} that requires independent study.

17.1.3 Conclusions
There have been many advances in neural networks for survival analysis. It is not possible
to review all proposed survival neural networks without diverting too far from the book
scope. This survey of ANNs should demonstrate two points: firstly that the vast majority
(if not all) of survival ANNs are reduction models that either find a way around censoring
via imputation or discretisation of time-intervals, or by focusing on partial likelihoods only;
secondly that no survival ANN is fully accessible or transparent.

Despite ANNs being highly performant in other areas of supervised learning, there is strong
evidence that the survival ANNs above are inferior to a Cox PH when the data follows
the PH assumption or when variables are linearly related (Michael F. Gensheimer and
Narasimhan 2018; Luxhoj and Shyur 1997; Ohno-Machado 1997; Puddu and Menotti 2012;
Xiang et al. 2000; Yang 2010; Yasodhara, Bhat, and Goldenberg 2018; Zhao and Feng 2020).
There are not enough experiments to make conclusions in the case when the data is non-PH.
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Experiments in (R. E. B. Sonabend 2021) support the finding that survival ANNs are not
performant.

There is evidence that many papers introducing neural networks do not utilise proper methods
of comparison or evaluation (Király, Mateen, and Sonabend 2018) and in conducting this
survey, these findings are further supported. Many papers made claims of being ‘superior’
to the Cox model based on unfair comparisons (RM2){sec:car_reduxstrats_mistakes} or
miscommunicating (or misinterpreting) results (e.g. (Fotso 2018)). At this stage, it does
not seem possible to make any conclusions about the effectiveness of neural networks in
survival analysis. Moreover, even the authors of these models have pointed out problems
with transparency (E. M. Biganzoli, Ambrogi, and Boracchi 2009; Liestol, Andersen, and
Andersen 1994), which was further highlighted by Schwarzer et al. (Schwarzer, Vach, and
Schumacher 2000).

Finally, accessibility of neural networks is also problematic. Many papers do not release their
code and instead just state their networks architecture and available packages. In theory,
this is enough to build the models however this does not guarantee the reproducibility that is
usually expected. For users with a technical background and good coding ability, many of the
models above could be implemented in one of the neural network packages in R, such as nnet
(N. Venables and D. Ripley 2002) and neuralnet (Fritsch, Guenther, and N. Wright 2019);
though in practice the only package that does contain these models, survivalmodels, does
not directly implement the models in R (which is much slower than Python) but provides a
method for interfacing the Python implementations in pycox (Kvamme 2018).

Further reading

• Schwarzer, Vach, and Schumacher (2000) provided an early survey of neural networks,
focusing on ways in which neural networks have been ‘misused’ in the context of
survival analysis. Whilst neural networks have moved on substantially since, their
early observations remain valid today.
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TODO (150-200 WORDS)

, Major changes expected!

This page is a work in progress and major changes will be made over time.

In this chapter, composition and reduction are formally introduced, defined and demonstrated
within survival analysis. Neither of these are novel concepts in general or in survival, with
several applications already seen earlier when reviewing models (particularly in neural
networks), however a lack of formalisation has led to much repeated work and at times
questionable applications (Section 17.1). The primary purpose of this chapter is to formalise
composition and reduction for survival and to unify references and strategies for future
use. These strategies are introduced in the context of minimal ‘workflows’ and graphical
‘pipelines’ in order to maximise their generalisability.

A workflow is a generic term given to a series of sequential operations. For example a
standard ML workflow is fit/predict/evaluate, which means a model is fit, predictions are
made, and these are evaluated. In this book, a pipeline is the name given to a concrete
workflow. Section 19.1 demonstrates how pipelines are represented in this book.

Composition (Section 19.2) is a general process in which an object is built (or composed)
from other objects and parameters. Reduction (Section 19.3) is a closely related concept that
utilises composition in order to transform one problem into another. Concrete strategies for
composition and reduction are detailed in sections Section 19.4 and Section 19.5.

Notation and Terminology

The notation introduced in Chapter 4 is recapped for use in this chapter: the generative
survival template for the survival setting is given by (X, T, ∆, Y, C) t.v.i. X×T ×{0, 1}×T ×T
where X ⊆ Rp and T ⊆ R≥0, where C, Y are unobservable, T := min{Y, C}, and ∆ = I(Y =
T ). Random survival data is given by (Xi, Ti, ∆i, Yi, Ci)

i.i.d.∼ (X, T, ∆, Y, C). Usually data
will instead be presented as a training dataset, Dtrain = {(X1, T1, ∆1), ..., (Xn, Tn, ∆n)}
where (Xi, Ti, ∆i)

i.i.d.∼ (X, T, ∆), and some test data Dtest = (X∗, T ∗, ∆∗) ∼ (X, T, ∆).

For regression models the generative template is given by (X, Y ) t.v.i. X ⊆ Rp and Y ⊆ R.
As with the survival setting, a regression training set is given by {(X1, Y1), ..., (Xn, Yn)}
where (Xi, Yi)

i.i.d.∼ (X, Y ) and some test data (X∗, Y ∗) ∼ (X, Y ).
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19.1 Representing Pipelines
Before introducing concrete composition and reduction algorithms, this section briefly
demonstrates how these pipelines will be represented in this book.

Pipelines are represented by graphs designed in the following way: all are drawn with
operations progressing sequentially from left to right; graphs are comprised of nodes (or
‘vertices’) and arrows (or ‘directed edges’); a rounded rectangular node represents a process
such as a function or model fitting/predicting; a (regular) rectangular node represents objects
such as data or hyper-parameters. Output from rounded nodes are sometimes explicitly
drawn but when omitted the output from the node is the input to the next.

These features are demonstrated in ?@fig-car-example. Say y = 2 and a = 2, then: data is
provided (y = 2) and passed to the shift function (f(x) = x + 2), the output of this function
(y = 4) is passed directly to the next (h(x|a) = xa), this function requires a parameter which
is also input (a = 2), finally the resulting output is returned (y∗ = 16). Programmatically,
a = 2 would be a hyper-parameter that is stored and passed to the required function when
the function is called.

This pipeline is represented as a pseudo-algorithm in (alg-car-ex?), though of course is
overly complicated and in practice one would just code (y + 2)∧a.

19.2 Introduction to Composition
This section introduces composition, defines a taxonomy for describing compositors (Sec-
tion 19.2.1), and provides some motivating examples of composition in survival analysis
(Section 19.2.2).

In the simplest definition, a model (be it mathematical, computational, machine learning,
etc.) is called a composite model if it is built of two or more constituent parts. This can be
simplest defined in terms of objects. Just as objects in the real-world can be combined in
some way, so can mathematical objects. The exact ‘combining’ process (or ‘compositor’)
depends on the specific composition, so too do the inputs and outputs. By example, a wooden
table can be thought of as a composite object (Figure 19.1). The inputs are wood and nails,
the combining process is hammering (assuming the wood is pre-chopped), and the output is
a surface for eating. In mathematics, this process is mirrored. Take the example of a shifted
linear regression model. This is defined by a linear regression model, f(x) = β0 + xβ1, a
shifting parameter, α, and a compositor g(x|α) = f(x) + α. Mathematically this example is
overly trivial as this could be directly modelled with f(x) = α+β0 +xβ1, but algorithmically
there is a difference. The composite model g, is defined by first fitting the linear regression
model, f , and then applying a shift, α; as opposed to fitting a directly shifted model.

Why Composition?

Tables tend to be better surfaces for eating your dinner than bundles of wood. Or in
modelling terms, it is well-known that ensemble methods (e.g. random forests) will generally
outperform their components (e.g. decision trees). All ensemble methods are composite
models and this demonstrates one of the key use-cases of composition: improved predictive
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Figure 19.1: Visualising composition in the real-world. A table is a composite object built
from nails and wood, which are combined with a hammer ‘compositor’. Figure not to scale.

performance. The second key use-case is reduction, which is fully discussed in Section 19.3.
Section 19.2.2 motivates composition in survival analysis by demonstrating how it is already
prevalent but requires formalisation to make compositions more transparent and accessible.

Composite Model vs. Sub-models

A bundle of wood and nails is not a table and 1, 000 decision trees are not a random forest,
both require a compositor. The compositor in a composite model combines the components
into a single model. Considering a composite model as a single model enables the hyper-
parameters of the compositor and the component model(s) to be efficiently tuned whilst
being evaluated as a single model. This further allows the composite to be compared to
other models, including its own components, which is required to justify complexity instead
of parsimony in model building (?@sec-eval-why-why).

19.2.1 Taxonomy of Compositors
Just as there are an infinite number of ways to make a table, composition can come in
infinite forms. However there are relatively few categories that these can be grouped into.
Two primary taxonomies are identified here. The first is the ‘composition type’ and relates
to the number of objects composed:

[i)] i. Single-Object Composition (SOC) – This form of composition either makes use of
parameters or a transformation to alter a single object. The shifted linear regression model
above is one example of this, another is given in Section 19.4.3. i. Multi-Object Composition
(MOC) – In contrast, this form of composition combines multiple objects into a single one.
Both examples in Section 19.2.2 are multi-object compositions.

The second grouping is the ‘composition level’ and determines at what ‘level’ the composition
takes place:

[i)] i. Prediction Composition – This applies at the level of predictions; the component
models could be forgotten at this point. Predictions may be combined from multiple models
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(MOC) or transformed from a single model (SOC). Both examples in Section 19.2.2 are
prediction compositions. i. Task Composition – This occurs when one task (e.g. regression)
is transformed to one or more others (e.g. classification), therefore always SOC. This is seen
mainly in the context of reduction (Section 19.3). i. Model Composition – This is commonly
seen in the context of wrappers (Section 19.5.1.4), in which one model is contained within
another. i. Data Composition – This is transformation of training/testing data types, which
occurs at the first stage of every pipeline.

19.2.2 Motivation for Composition
Two examples are provided below to demonstrate common uses of composition in survival
analysis and to motivate the compositions introduced in Section 19.4.

Example 1: Cox Proportional Hazards

Common implementations of well-known models can themselves be viewed as composite
models, the Cox PH is the most prominent example in survival analysis. Recall the model
defined by

h(τ |Xi) = h0(τ) exp(βXi)

where h0 is the baseline hazard and β are the model coefficients.

This can be seen as a composite model as Cox defines the model in two stages (Cox 1972):
first fitting the β-coefficients using the partial likelihood and then by suggesting an estimate
for the baseline distribution. This first stage produces a linear predictor return type (?@sec-
surv-set-types) and the second stage returns a survival distribution prediction. Therefore
the Cox model for linear predictions is a single (non-composite) model, however when used
to make distribution predictions then it is a composite. Cox implicitly describes the model
as a composite by writing ‘’alternative simpler procedures would be worth having’ ’ (Cox
1972), which implies a decision in fitting (a key feature of composition). This composition is
formalised in Section 19.4.1 as a general pipelins. The Cox model utilises the pipeline with a
PH form and Kaplan-Meier baseline.

Example 2: Random Survival Forests

Fully discussed in Chapter 14, random survival forests are composed from many individual
decision trees via a prediction composition algorithm ((alg-rsf-pred?)). In general, random
forests perform better than their component decision trees, which tends to be true of all
ensemble methods. Aggregation of predictions in survival analysis requires slightly more
care than other fields due to the multiple prediction types, however this is still possible and
is formalised in Section 19.4.4.

19.3 Introduction to Reduction
This section introduces reduction, motivates its use in survival analysis (Section 19.3.1), de-
tails an abstract reduction pipeline and defines the difference between a complete/incomplete
reduction (Section 19.3.2), and outlines some common mistakes that have been observed in
the literature when applying reduction (Section 19.3.3).
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Reduction is a concept found across disciplines with varying definitions. This report uses the
Langford definition: reduction is ‘’a complex problem decomposed into simpler subproblems
so that a solution to the subproblems gives a solution to the complex problem’ ’ (Langford
et al. 2016). Generalisation (or induction) is a common real-world use of reduction, for
example sampling a subset of a population in order to estimate population-level results. The
true answer (population-level values) may not always be found in this way but very good
approximations can be made with simpler sub-problems (sub-sampling).

Reductions are workflows that utilise composition. By including hyper-parameters, even
complex reduction strategies can remain relatively flexible. To illustrate reduction by example,
recall the table-building example (Section 19.2) in which the task of interest is to acquire a
table. The most direct but complex solution is to fell a tree and directly saw it into a table
(Figure 19.2, top), clearly this is not a sensible process. Instead the problem can be reduced
into simpler sub-problems: saw the tree into bundles of wood, acquire nails, and then use
the ‘hammer compositor’ (Figure 19.1) to create a table (Figure 19.2, bottom).

Figure 19.2: Visualising reduction in the real-world. The complex process (top) of directly
sawing a tree into a table is inefficient and unnecessarily complex. The reduction (bottom)
that involves first creating bundles of wood is simpler, more efficient, and yields the same
result, though technically requiring more steps.

In a modelling example, predicting a survival distribution with the Cox model can be viewed
as a reduction in which two sub-problems are solved and composed:

i. predict continuous ranking;
ii. estimate baseline hazard; and
iii. compose with (Section 19.4.1).

This is visualised as a reduction strategy in ?@fig-car-cargraph. The entire process from
defining the original problem, to combining the simpler sub-solutions (in green), is the
reduction (in red).
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19.3.1 Reduction Motivation
Formalisation of reduction positively impacts upon accessibility, transparency, and predictive
performance. Improvements to predictive performance have already been demonstrated
when comparing random forests to decision trees. In addition, a reduction with multiple
stages and many hyper-parameters allows for fine tuning for improved transparency and
model performance (usual overfitting caveat applies, as does the trade-off described in
?@sec-car-pipelines-trade).

The survey of ANNs (Section 17.1) demonstrated how reduction is currently utilised without
transparency. Many of these ANNs are implicitly reductions to probabilistic classification
(Section 19.5.1.6) however none include details about how the reduction is performed.
Furthermore in implementation, none provide interface points to the reduction hyper-
parameters. Formalisation encourages consistent terminology, methodology and transparent
implementation, which can only improve model performance by exposing further hyper-
parameters.

Accessibility is improved by formalising specific reduction workflows that previously de-
manded expert knowledge in deriving, building, and running these pipelines.

Finally there is an economic and efficiency advantage to reduction. A reduction model is
relatively ‘cheap’ to explore as they utilise pre-established models and components to solve
a new problem. Therefore if a certain degree of predictive ability can be demonstrated from
reduction models, it may not be worth the expense of pursuing more novel ideas and hence
reduction can help direct future research.

19.3.2 Task, Loss, and Data Reduction
Reduction can be categorised into task, loss, and data reduction, often these must be used
in conjunction with each other. The direction of the reductions may be one- or two-way;
this is visualised in ?@fig-car-reduxdiag. This diagram should not be viewed as a strict
fit/predict/evaluation workflow but instead as a guidance for which tasks, T , data, D, models,
M , and losses, L, are required for each other. The subscript O refers to the original object
‘level’ before reduction, whereas the subscript R is in reference to the reduced object.

The individual task, model, and data compositions in the diagram are listed below, the
reduction from survival to classification (Section 19.5.1) is utilised as a running example to
help exposition.

• TO → TR: By definition of a machine learning reduction, task reduction will always be one
way. A more complex task, TO, is reduced to a simpler one, TR, for solving. TR could also
be multiple simpler tasks. For example, solving a survival task, TO, by classification, TR

(Section 19.5.1).
• TR →MR: All machine learning tasks have models that are designed to solve them. For

example logistic regression, MR, for classification tasks, TR.
• MR →MO: The simpler models, MR, are used for the express purpose to solve the original

task, TO, via solving the simpler ones. To solve TO, a compositor must be applied, which
may transform one (SOC) or multiple models (MOC) at a model- or prediction-level, thus
creating MO. For example predicting survival probabilities with logistic regression, MR, at
times 1, ..., τ∗ for some τ∗ ∈ N>0 (Section 19.5.1.4).

• MO → TO: The original task should be solvable by the composite model. For example
predicting a discrete survival distribution by concatenating probabilistic predictions at the
times 1, ..., τ∗ (Section 19.5.1.6).

• DO → DR: Just as the tasks and models are reduced, the data required to fit these must
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likewise be reduced. Similarly to task reduction, data reduction can usually only take
place in one direction, to see why this is the case take an example of data reduction by
summaries. If presented with 10 data-points {1, 1, 1, 5, 7, 3, 5, 4, 3, 3} then these could be
reduced to a single point by calculating the sample mean, 3.3. Clearly given only the
number 3.3 there is no strategy to recover the original data. There are very few (if any)
data reduction strategies that allow recovery of the original data. Continuing the running
example, survival data, DO, can be binned (Section 19.5.1.1) to classification data, DR.

There is no arrow between DO and MO as the composite model is never fit directly, only via
composition from MR →MO. However, the original data, DO, is required when evaluating the
composite model against the respective loss, LO.1 Reduction should be directly comparable
to non-reduction models, hence this diagram does not include loss reduction and instead
insists that all models are compared against the same loss LO.

A reduction is said to be complete if there is a full pipeline from TO →MO and the original
task is solved, otherwise it is incomplete. The simplest complete reduction is comprised of
the pipeline TO → TR →MR →MO. Usually this is not sufficient on its own as the reduced
models are fit on the reduced data, DR →MR.

A complete reduction can be specified by detailing:

i. the original task and the sub-task(s) to be solved, TO → TR;
ii. the original dataset and the transformation to the reduced one, DO → DR (if

required); and
iii. the composition from the simpler model to the complex one, MR →MO.

19.3.3 Common Mistakes in Implementation of Reduction
In surveying models and measures, several common mistakes in the implementation of reduc-
tion and composition were found to be particularly prevalent and problematic throughout
the literature. It is assumed that these are indeed mistakes (not deliberate) and result from
a lack of prior formalisation. These mistakes were even identified 20 years ago (Schwarzer,
Vach, and Schumacher 2000) but are provided in more detail in order to highlight their
current prevalence and why they cannot be ignored.

RM1. Incomplete reduction. This occurs when a reduction workflow is presented as if it
solves the original task but fails to do so and only the reduction strategy is solved. A common
example is claiming to solve the survival task by using binary classification, e.g. erroneously
claiming that a model predicts survival probabilities (which implies distribution) when it
actually predicts a five year probability of death ((box-task-classif?)). This is a mistake as
it misleads readers into believing that the model solves a survival task ((box-task-surv?))
when it does not. This is usually a semantic not mathematical error and results from misuse of
terminology. It is important to be clear about model predict types (?@sec-surv-set-types)
and general terms such as ‘survival predictions’ should be avoided unless they refer to one
of the three prediction tasks. RM2. Inappropriate comparisons. This is a direct consequence
of (RM1) and the two are often seen together. (RM2) occurs when an incomplete reduction
is directly compared to a survival model (or complete reduction model) using a measure
appropriate for the reduction. This may lead to a reduction model appearing erroneously
superior. For example, comparing a logistic regression to a random survival forest (RSF)

1A complete diagram would indicate that DO is split into training data, which is subsequently reduced,
and test data, which is passed to LO. All reductions in this section can be applied to any data splitting
process.
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(Chapter 14) for predicting survival probabilities at a single time using the accuracy measure
is an unfair comparison as the RSF is optimised for distribution predictions. This would be
non-problematic if a suitable composition is clearly utilised. For example a regression SSVM
predicting survival time cannot be directly compared to a Cox PH. However the SSVM
can be compared to a CPH composed with the probabilistic to deterministic compositor,
then conclusions can be drawn about comparison to the composite survival time Cox model
(and not simply a Cox PH). RM3. Na"ive censoring deletion. This common mistake occurs
when trying to reduce survival to regression or classification by simply deleting all censored
observations, even if censoring is informative. This is a mistake as it creates bias in the
dataset, which can be substantial if the proportion of censoring is high and informative.
More robust deletion methods are described in Chapter 23. RM4. Oversampling uncensored
observations. This is often seen when trying to reduce survival to regression or classification,
and often alongside (RM3). Oversampling is the process of replicating observations to
artificially inflate the sample size of the data. Whilst this process does not create any new
information, it can help a model detect important features in the data. However, by only
oversampling uncensored observations, this creates a source of bias in the data and ignores
the potentially informative information provided by the proportion of censoring.

19.4 Composition Strategies for Survival Analysis
Though composition is common practice in survival analysis, with the Cox model being a
prominent example, a lack of formalisation means a lack of consensus in simple operations. For
example, it is often asked in survival analysis how a model predicting a survival distribution
can be used to return a survival time prediction. A common strategy is to define the survival
time prediction as the median of the predicted survival curve however there is no clear
reason why this should be more sensible than returning the distribution mean, mode, or
some random quantile. Formalisation allow these choices to be analytically compared both
theoretically and practically as hyper-parameters in a workflow. Four prediction compositions
are discussed in this section ((tab-car-taxredcar?)), three are utilised to convert prediction
types between one another, the fourth is for aggregating multiple predictions. One data
composition is discussed for converting survival to regression data. Each is first graphically
represented and then the components are discussed in detail. As with losses in the previous
chapter, compositions are discussed at an individual observation level but extend trivially to
multiple observations.

Table 19.1: Compositions formalised in Section 19.4.

ID1 Composition Type2 Level3

C1) Linear predictor to distribution MOC Prediction
C2) Survival time to distribution MOC Prediction
C3) Distribution to survival time SOC Prediction
C4) Survival model averaging MOC Prediction
C5) Survival to regression SOC Data

1. ID for reference throughout this book. 2. Composition type. Multi-object composition
(MOC) or single-object composition (SOC). 3. Composition level.
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19.4.1 C1) Linear Predictor → Distribution
This is a prediction-level MOC that composes a survival distribution from a predicted linear
predictor and estimated baseline survival distribution. The composition (?@fig-car-comp-
distr) requires:

• η̂: Predicted linear predictor. η̂ can be tuned by including this composition multiple times
in a benchmark experiment with different models predicting η̂. In theory any continuous
ranking could be utilised instead of a linear predictor though results may be less sensible
(?@sec-car-pipelines-trade).

• Ŝ0: Estimated baseline survival function. This is usually estimated by the Kaplan-Meier
estimator fit on training data, ŜKM . However any model that can predict a survival
distribution can estimate the baseline distribution (caveat: see ?@sec-car-pipelines-
trade) by taking a uniform mixture of the predicted individual distributions: say ξ1, ..., ξm

are m predicted distributions, then Ŝ0(τ) = 1
m

∑m
i=1 ξi.S(τ). The mixture is required as

the baseline must be the same for all observations. Alternatively, parametric distributions
can be assumed for the baseline, e.g. ξ = Exp(2) and ξ.S(t) = exp(−2t). As with η̂, this
parameter is also tunable.

• M : Chosen model form, which theoretically can be any non-increasing right-continuous
function but is usually one of:

• Proportional Hazards (PH): SP H(τ |η, S0) = S0(τ)exp(η)

• Accelerated Failure Time (AFT): SAF T (τ |η, S0) = S0( τ
exp(η) )

• Proportional Odds (PO): SP O(τ |η, S0) = S0(τ)
exp(−η)+(1−exp(−η))S0(τ)

Models that predict linear predictors will make assumptions about the model form and
therefore dictate sensible choices of M , for example the Cox model assumes a PH form. This
does not mean other choices of M cannot be specified but that interpretation may be more
difficult (?@sec-car-pipelines-trade). The model form can be treated as a hyper-parameter
to tune. * C: Compositor returning the composed distribution, ζ := C(M, η̂, Ŝ0) where ζ
has survival function ζ.S(τ) = M(τ |η̂, Ŝ0).

Pseudo-code for training ((alg-car-comp-distr-fit?)) and predicting ((alg-car-comp-
distr-pred?)) this composition as a model ‘wrapper’ with sensible parameter choices
(?@sec-car-pipelines-trade) is provided in appendix (app-car?).

19.4.2 C2) Survival Time → Distribution
This is a prediction-level MOC that composes a distribution from a predicted survival time
and assumed location-scale distribution. The composition (?@fig-car-comp-response)
requires:

• T̂ : A predicted survival time. As with the previous composition, this is tunable. In theory
any continuous ranking could replace T̂ , though the resulting distribution may not be
sensible (?@sec-car-pipelines-trade).

• ξ: A specified location-scale distribution, ξ(µ, σ), e.g. Normal distribution.
• σ̂: Estimated scale parameter for the distribution. This can be treated as a hyper-parameter

or predicted by another model.
• C: Compositor returning the composed distribution ζ := C(ξ, T̂ , σ̂) = ξ(T̂ , σ̂).

Pseudo-code for training ((alg-car-comp-response-fit?)) and predicting ((alg-car-comp-
response-pred?)) this composition as a model ‘wrapper’ with sensible parameter choices
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(?@sec-car-pipelines-trade) is provided in appendix (app-car?).

19.4.3 C3) Distribution → Survival Time Composition
This is a prediction-level SOC that composes a survival time from a predicted distribution.
Any paper that evaluates a distribution on concordance is implicitly using this composition
in some manner. Not acknowledging the composition leads to unfair model comparison
(Section 19.3.3). The composition (?@fig-car-comp-crank) requires:

• ζ: A predicted survival distribution, which again is ‘tunable’.
• ϕ: A distribution summary method. Common examples include the mean, median and

mode. Other alternatives include distribution quantiles, ζ.F −1(α),\α ∈ [0, 1]; α could be
tuned as a hyper-parameter.

• C: Compositor returning composed survival time predictions, T̂ := C(ϕ, ζ) = ϕ(ζ).

Pseudo-code for training ((alg-car-comp-crank-fit?)) and predicting ((alg-car-comp-
crank-pred?)) this composition as a model ‘wrapper’ with sensible parameter choices
(?@sec-car-pipelines-trade) is provided in appendix (app-car?).

19.4.4 C4) Survival Model Averaging
Ensembling is likely the most common composition in machine learning. In survival it is
complicated slightly as multiple prediction types means one of two possible compositions is
utilised to average predictions. The (?@fig-car-comp-avg) composition requires:

• ρ = ρ1, ..., ρB: B predictions (not necessarily from the same model) of the same type:
ranking, survival time or distribution; again ‘tunable’.

• w = w1, ..., wB : Weights that sum to one.
• C: Compositor returning combined predictions, ρ̂ := C(ρ, w) where C(ρ, w) = 1

B

∑B
i=1 wiρi,

if ρ are ranking of survival time predictions; or C(ρ, w) = ζ where ζ is the distribution de-
fined by the survival function ζ.S(τ) = 1

B

∑B
i=1 wiρi.S(τ), if ρ are distribution predictions.

Pseudo-code for training ((alg-car-comp-avg-fit?)) and predicting ((alg-car-comp-avg-
pred?)) this composition as a model ‘wrapper’ with sensible parameter choices (?@sec-
car-pipelines-trade) is provided in appendix (app-car?).

19.5 Novel Survival Reductions
This section collects the various strategies and settings discussed previously into complete
reduction workflows. (tab-car-reduxes?) lists the reductions discussed in this section with
IDs for future reference. All strategies are described by visualising a graphical pipeline and
then listing the composition steps required in fitting and predicting.

This section only includes novel reduction strategies and does not provide a survey of
pre-existing strategies. This limitation is primarily due to time (and page) constraints as
every method has very distinct workflows that require complex exposition. Well-established
strategies are briefly mentioned below and future research is planned to survey and compare
all strategies with respect to empirical performance (i.e. in benchmark experiments).

Two prominent reductions are ‘landmarking’ (Van Houwelingen 2007) and piecewise expo-
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nential models (M. Friedman 1982). Both are reductions for time-varying covariates and
hence outside the scope of this book. Relevant to this book scope is a large class of strategies
that utilise ‘discrete time survival analysis’ (Tutz and Schmid 2016); these strategies include
reductions (R7) and (R8). Methodology for discrete time survival analysis has been seen
in the literature for the past three decades (Liestol, Andersen, and Andersen 1994). The
primary reduction strategy for discrete time survival analysis is implemented in the R
package discSurv. (Welchowski and Schmid 2019); this is very similar to (R7) except that
it enforces stricter constraints in the composition procedures and forces a ‘discrete-hazard’
instead of ‘discrete-survival’ representation (Section 19.5.1.2).

19.5.1 R7-R8) Survival → Probabilistic Classification
Two separate reductions are presented in ?@fig-car-R7R8 however as both are reductions
to probabilistic classification and are only different in the very last step, both are presented
in this section. Steps and compositions of the reduction (?@fig-car-R7R8):

Fit F1) A survival dataset, Dtrain, is binned, B, with a continuous to discrete data composi-
tion (Section 19.5.1.1). F2) A multi-label classification model, with adaptations for censoring,
gL(DB |θ), is fit on the transformed dataset, DB . Optionally, gL could be further reduced to
binary, gB , or multi-class classification, gc, (Section 19.5.1.4). Predict P1) Testing survival
data, Dtest, is passed to the trained classification model, ĝ, to predict pseudo-survival proba-
bilities S̃ (or optionally hazards (Section 19.5.1.2)). P2a) Predictions can be composed, T1,
into a survival distribution prediction, ζ = ζ1, ..., ζm (Section 19.5.1.6); or, P2b) Predictions
can be composed, T2, to survival time predictions, T̂ = T̂1, ..., T̂m (Section 19.5.1.7).

Further details for binning, multi-label classification, and transformation of pseudo-survival
probabilities are now provided.

19.5.1.1 Composition: Binning Survival Times

An essential part of the reduction is the transformation from a survival dataset to a
classification dataset, which requires two separate compositions. The first (discussed here)
is to discretise the survival times (B(Dtrain|w) in ?@fig-car-R7R8) and the second is to
merge the survival time and censoring indicator into a single outcome (Section 19.5.1.2).

Discretising survival times is achieved by the common ‘binning’ composition, in which
a continuous outcome is discretised into ‘bins’ according to specified thresholds. These
thresholds are usually determined by specifying the width of the bins as a hyper-parameter
w.2 This is a common transformation and therefore further discussion is not provided here.
An example is given below with the original survival data on the left and the binned data
on the right (w = 1).

X Time (Cont.) Died
1 1.56 0
2 2 1
3 3.3 1
4 3.6 0
5 4 0

2Binning is described here with equal widths but generalises to unequal widths trivially.
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X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

19.5.1.2 Composition: Survival to Classification Outcome

The binned dataset still has the unique survival data format of utilising two outcomes for
training (time and status) but only making a prediction for one outcome (distribution). In
order for this to be compatible with classification, the two outcome variables are composed
into a single variable.3 This is achieved by casting the survival times into a ‘wide’ format
and creating a new outcome indicator.4 Two outcome transformations are possible, the first
represents a discrete survival function and the second represents a discrete hazard function.5

Discrete Survival Function Composition

In this composition, the data in the transformed dataset represents the discrete survival
function. The new indicator is defined as follows,

Yi;τ :=


1, Ti > τ

0, Ti ≤ τ ∩∆i = 1
−1, Ti ≤ τ ∩∆i = 0

At a given discrete time τ , an observation, i, is either alive (Yi;τ = 1), dead (Yi;τ = 0), or
censored (Yi;τ = −1). Therefore P̂ (Yi;τ = 1) = Ŝi(τ), motivating this particular choice of
representation.

This composition is demonstrated below with the binned data (left) and the composed
classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

X [1,2) [2,3) [3,4) [4,5)
1 -1 -1 -1 -1
2 1 0 0 0

3This is the first key divergence from other discrete-time classification strategies, which use the censoring
indicator as the outcome and the time outcome as a feature.

4This is the second key divergence from other discrete-time classification strategies, which keep the data
in a ’long’ format.

5This is the final key divergence from other discrete-time classification strategies, which enforce the
discrete hazard representation.
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X [1,2) [2,3) [3,4) [4,5)
3 1 1 0 0
4 1 1 -1 -1
5 1 1 -1 -1

Discrete Hazard Function Composition

In this composition, the data in the transformed dataset represents the discrete hazard
function. The new indicator is defined as follows,

Y ∗
i;τ :=


1, Ti = τ ∩∆i = 1
−1, Ti = τ ∩∆i = 0
0, otherwise

At a given discrete time τ , an observation, i, either experiences the event (Y ∗
i;τ = 1),

experiences censoring (Yi;τ = −1), or neither (Yi;τ = 0). Utilising sequential multi-label
classification problem transformation methods (Section 19.5.1.4) results in P̂ (Y ∗

i;τ = 1) =
ĥi(τ). If methods are utilised that do not ‘look back’ at predictions then P̂ (Y ∗

i;τ = 1) = p̂i(τ)
(Section 19.5.1.4).6

This composition is demonstrated below with the binned data (left) and the composed
classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

X [1,2) [2,3) [3,4) [4,5)
1 -1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 -1 0
5 0 0 0 -1

Multi-Label Classification Data

In both compositions, survival data t.v.i. Rp × R≥0 × {0, 1} is transformed to multi-label
classification data t.v.i. Rp × {−1, 0, 1}K for K binned time-intervals. The multi-label
classification task is defined in Section 19.5.1.4 with possible algorithms.

The discrete survival representation has a slightly more natural interpretation and is ‘easier’
for classifiers to use for training as there are more positive events (i.e. more observations

6This important distinction is not required in other discrete-time reduction strategies that automatically
condition the prediction by including time as a feature.
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alive) to train on, whereas the discrete hazard representation will have relatively few events
in each time-point. However the hazard representation leads to more natural predictions
(Section 19.5.1.6).

A particular bias that may easily result from the composition of survival to classification
data is now discussed.

19.5.1.3 Reduction to Classification Bias

The reduction to classification bias is commonly known (Zhou et al. 2005) but is reiterated
briefly here as it must be accounted for in any automated reduction to classification workflow.
This bias occurs when making classification predictions about survival at a given time and
incorrectly censoring patients who have not been observed long enough, instead of removing
them.

By example, say the prediction of interest is five-year survival probabilities after a particular
diagnosis, clearly a patient who has only been diagnosed for three years cannot inform this
prediction. The bias is introduced if this patient is censored at five-years instead of being
removed from the dataset. The result of this bias is to artificially inflate the probability of
survival at each time-point as an unknown outcome is treated as censored and therefore
alive.

This bias is simply dealt with by removing patients who have not been alive ‘long enough’.7
Paradoxically, even if a patient is observed to die before the time-point of interest, they
should still be removed if they have not been in the dataset ‘long enough’ as failing to do
so will result in a bias in the opposite direction, thus over-inflating the proportion of dead
observations.

Accounting for this bias is particularly important in the multi-label reduction as the number
of observable patients will decrease over time due to censoring.

19.5.1.4 Multi-Label Classification Algorithms

As the work in this section is completely out of the book scope, the full text is in appendix
(app-mlc?). The most important contributions from this section are:

• Reviewing problem transformation methods (Tsoumakas and Katakis 2007) for multi-label
classification;

• Identifying that only binary relevance, nested stacking, and classifier chains are appropriate
in this reduction; and

• Generalising these methods into a single wrapper for any binary classifier, the ‘LWrapper’.

19.5.1.5 Censoring in Classification

Classification algorithms cannot natively handle the censoring that is included in the survival
reduction, but this can be incorporated using one of two approaches.

Multi-Class Classification

All multi-label datasets can also handle multi-class data, hence the simplest way in which
to handle censoring is to make multi-class predictions in each label for the outcome
Yτ t.v.i.{−1, 0, 1}. Many off-shelf classification learners can make multi-class predictions
natively and simple reductions exist for those that cannot. As a disadvantage to this method,

7Accounting for this bias is only possible if the study start and end dates are known, as well as the date
the patient entered the study.
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classifiers would then predict if an individual is dead or alive or censored (each mutually
exclusive), and not simply alive or dead. Though this could be perceived as an advantage
when censoring is informative as this will accurately reflect a real-world competing-risks
set-up.

Subsetting/Hurdle Models

For this approach, the multi-class task is reduced to two binary class tasks: first predict if a
subject is censored or not (dead or alive) and only if the prediction for censoring is below
some threshold, α ∈ [0, 1], then predict if the subject is alive or not (dead or censored). If
the probability of censoring is high in the first task then the probability of being alive is
automatically set to zero in the final prediction, otherwise the prediction from the second
task is used. Any classifier can utilise this approach and it has a meaningful interpretation,
additionally α is a tunable hyper-parameter. The main disadvantage is increases to storage
and run-time requirements as double the number of models may be fit.

Once the datasets have been composed to classification datasets and censoring is suitably
incorporated by either approach, then any probabilistic classification model can be fit on
the data. Predictions from these models can either be composed to a distribution prediction
(R7) or a survival time prediction (R8).

19.5.1.6 R7) Probabilistic Survival → Probabilistic Classification

This final part of the (R7) reduction is described separately for discrete hazard and survival
representations of the data (Section 19.5.1.2).

Discrete Hazard Representation

In this representation recall that predictions of the positive class, P (Yτ = 1), are estimating
the quantity h(τ). These predictions provide a natural and efficient transformation from
predicted hazards to survival probabilities. Let ĥi be a predicted hazard function for some
observation i, then the survival function for that observation can be found with a Kaplan-
Meier type estimator,

S̃i(τ∗) =
∏

τ

1− ĥi(τ)

Now predictions are for a pseudo-survival function, which is ‘pseudo’ as it is not right-
continuous. Resolving this is discussed below.

Discrete Survival Representation

In this representation, P (Yτ = 1) is estimating S(τ), which means that predictions from a
classification model result in discrete point predictions and not a right-continuous function.
More importantly, there is no guarantee that a non-increasing function will be predicted,
i.e. there is no guarantee that P (Yj = 1) < P (Yi = 1), for time-points j > i.

Unfortunately there is no optimal way of dealing with predictions of this sort and ‘mistakes’
of this kind have been observed in some software implementation. One point to note is that
in practice these are quite rare as the probability of survival will always decrease over time.
Therefore the ‘usual’ approach is quite ‘hacky’ and involves imputing increasing predictions
with the previous prediction, formally,

S̃(i + 1) := min{P (Yi+1 = 1), P (Yi = 1)},∀i = R≥0

assuming S̃(0) = 1. Future research should seek more robust alternatives.
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Right-Continuous Survival Function

From either representation, a \ non-increasing but non-continuous pseudo-survival function,
S̃, is now predicted. Creating a right-continuous function (‘T1(S̃)’ in ?@fig-car-R7) from
these point predictions (Figure 19.3 (a)) is relatively simple and well-known with accessible off-
shelf software. At the very least, one can assume a constant hazard rate between predictions
and cast them into a step function (Figure 19.3 (b)). This is a fairly common assumption
and is usually valid as bin-width decreases. Alternatively, the point predictions can be
smoothed into a continuous function with off-shelf software, for example with polynomial
local regression smoothing (Figure 19.3 (c)) or generalised linear smoothing (Figure 19.3 (d)).
Whichever method is chosen, the survival function is now non-increasing right-continuous
and the (R7) reduction is complete.

(a) Point Predictions (b) Survival Step Function

(c) Local polynomial regression smoothing (d) Generalised linear smoothing

Figure 19.3: Survival function as a: point prediction (a), step function assuming constant
risk (b), local polynomial regression smoothing (c), and generalised linear smoothing (d). (c)
and (d) computed with ggplot2 (Wickham 2016).

19.5.1.7 R8) Deterministic Survival → Probabilistic Classification

Predicting a deterministic survival time from the multi-label classification predictions is
relatively straightforward and can be viewed as a discrete analogue to (C3) (Section 19.4.3).
For the discrete hazard representation, one can simply take the predicted time-point for
an individual to be time at which the predicted hazard probability is highest however this
could easily be problematic as there may be multiple time-points at which the predicted
hazard equals 1. Instead it is cleaner to first cast the hazard to a pseudo-survival probability
(Section 19.5.1.6) and then treat both representations the same.

Let S̃i be the predicted multi-label survival probabilities for an observation i such that S̃i(τ)
corresponds with P̂ (Yi;τ = 1) for label τ ∈ K where Yi;τ is defined in Section 19.5.1.2 and
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K = {1, ..., K} is the set of labels for which to make predictions. Then the survival time
transformation is defined by

T2(S̃i) = inf{τ ∈ K : S̃i(τ) ≤ β}

for some β ∈ [0, 1].

This is interpreted as defining the predicted survival time as the first time-point in which
the predicted probability of being alive drops below a certain threshold β. Usually β = 0.5,
though this can be treated as a hyper-parameter for tuning. This composition can be
utilised even if predictions are not non-increasing, as only the first time the predicted
survival probability drops below the threshold is considered. With this composition the (R8)
reduction is now complete.

19.6 Conclusions
This chapter introduced composition and reduction to survival analysis and formalised
specific strategies. Formalising these concepts allows for better quality of research and
most importantly improved transparency. Clear interface points for hyper-parameters and
compositions allow for reproducibility that was previously obfuscated by unclear workflows
and imprecise documentation for pipelines.

Additionally, composition and reduction improves accessibility. Reduction workflows vastly
increase the number of machine learning models that can be utilised in survival analysis,
thus opening the field to those whose experience is limited to regression or classification.
Formalisation of workflows allows for precise implementation of model-agnostic pipelines
as computational objects, as opposed to functions that are built directly into an algorithm
without external interface points.

Finally, predictive performance is also increased by these methods, which is most prominently
the case for the survival model averaging compositor (as demonstrated by RSFs).
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TODO (150-200 WORDS)

, Major changes expected!

This page is a work in progress and major changes will be made over time.

TODO

• I think all these sections should have examples in implemented models, e.g., here we can
point to SVM models and some neural nets

• We can also point to neural nets that use reduction to essentially just predict the linear
predictor via regression or to use pseudovalues

• Add pseudovalues
• Add prediction of the observed outcome (not survival) time

This is a data-level SOC that transforms survival data to regression data by either removing
censored observations or ‘imputing’ survival times. This composition is frequently incorrectly
utilised (Section 19.3.3) and therefore more detail is provided here than previous compositions.
Note that the previous compositions were prediction-level transformations that occur after a
survival model makes a prediction, whereas this composition is on a data-level and can take
place before model training or predicting.

In Statistics, there are only two methods for removing ‘missing’ values: deletion and imputa-
tion; both of these have been attempted for censoring.

Censoring can be beneficial, harmful, or neutral; each will affect the data differently if
deleted or imputed. Harmful censoring occurs if the reason for censoring is negative, for
example drop-out due to disease progression. Harmful censoring indicates that the true
survival time is likely soon after the censoring time. Beneficial censoring occurs if censoring
is positive, for example drop-out due to recovery. This indicates that the true survival time
is likely far from the censoring time. Finally neutral censoring occurs when no information
can be gained about the true survival time from the censoring time. Whilst the first two of
these can be considered to be dependent on the outcome, neutral censoring is often the case
when censoring is independent of the outcome conditional on the data, which is a standard
assumption for the majority of survival models and measures.
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23.0.0.1 Deletion #{sec-redux-regr-del}

Deletion is the process of removing observations from a dataset. This is usually seen in
‘complete case analysis’ in which observations with ‘missingness’, covariates with missing
values, are removed from the dataset. In survival analysis this method is somewhat riskier
as the subjects to delete depend on the outcome and not the features. Three methods are
considered, the first two are a more brute-force approach whereas the third allows for some
flexibility and tuning.

Complete Deletion

Deleting all censored observations is simple to implement with no computational overhead.
Complete deletion results in a smaller regression dataset, which may be significantly smaller
if the proportion of censoring is high. If censoring is uninformative, the dataset is suitably
large and the proportion of censoring suitably low, then this method can be applied without
further consideration. However if censoring is informative then deletion will add bias to the
dataset, although the ‘direction’ of bias cannot be known in advance. If censoring is harmful
then censored observations will likely have a similar profile to those that died, thus removing
censoring will artificially inflate the proportion of those who survive. Conversely if censoring
is beneficial then censored observations may be more similar to those who survive, thus
removal will artificially inflate the proportion of those who die.

Omission

Omission is the process of omitting the censoring indicator from the dataset, thus resulting in
a regression dataset that assumes all observations experienced the event. Complete deletion
results in a smaller dataset of dead patients, omission results in no sample size reduction but
the outcome may be incorrect. This reduction strategy is likely only justified for harmful
censoring. In this case the true survival time is likely close to the censoring time and therefore
treating censored observations as dead may be a fair assumption.

IPCW

If censoring is conditionally-outcome independent then deletion of censored events is possible
by using Inverse Probability of Censoring Weights (IPCW). This method has been seen
several times throughout this book in the context of models and measures. It has been
formalised as a composition technique by Vock et al. (2016) (Vock et al. 2016) although
their method is limited to binary classification. Their method weights the survival time
of uncensored observations by wi = 1/ĜKM (Ti) and deletes censored observations, where
ĜKM is the Kaplan-Meier estimate of the censoring distribution fit on training data. As
previously discussed, one could instead consider the Akritas (or any other) estimator for
ĜKM .

Whilst this method does provide a ‘safer’ way to delete censored observations, there is not a
necessity to do so. Instead consider the following weights

wi = ∆i + α(1−∆i)
ĜKM (Ti)

(23.1)

where α ∈ [0, 1] is a hyper-parameter to tune. Setting α = 1 equally weights censored and
uncensored observations and setting α = 0 recovers the setting in which censored observations
are deleted. It is assumed ĜKM is set to some very small ϵ when ĜKM (Ti) = 0. When α ̸= 0
this becomes an imputation method, other imputation methods are now discussed.
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23.0.0.2 Imputation

Imputation methods estimate the values of missing data conditional on non-missing data and
other covariates. Whilst the true value of the missing data can never be known, by carefully
conditioning on the ‘correct’ covariates, good estimates for the missing value can be obtained
to help prevent a loss of data. Imputing outcome data is more difficult than imputing
covariate data as models are then trained on ‘fake’ data. However a poor imputation should
still be clear when evaluating a model as testing data remains un-imputed. By imputing
censoring times with estimated survival times, the censoring indicator can be removed and
the dataset becomes a regression dataset.

Gamma Imputation

Gamma imputation (D. Jackson et al. 2014) incorporates information about whether cen-
soring is harmful, beneficial, or neutral. The method imputes survival times by generating
times from a shifted proportional hazards model

h(τ) = h0(τ) exp(η + γ)

where η is the usual linear predictor and γ ∈ R is a hyper-parameter determining the ‘type’
of censoring such that γ > 0 indicates harmful censoring, γ < 0 indicates beneficial censoring,
and γ = 0 is neutral censoring. This imputation method has the benefit of being tunable as
γ is a hyper-parameter and there is a choice of variables to condition the imputation. No
independent experiments exist studying how well this method performs, nor discussing the
theoretical properties of the method.

MRL

The Mean Residual Lifetime (MRL) estimator has been previously discussed in the context
of SVMs (Section 15.2). Here the estimator is extended to serve as an imputation method.
Recall the MRL function, MRL(τ |Ŝ) =

∫∞
τ

Ŝ(u) du/Ŝ(τ), where Ŝ is an estimate of the
survival function of the underlying survival distribution (e.g. ŜKM ). The MRL is interpreted
as the expected remaining survival time after the time-point τ . This serves as a natural
imputation strategy where given the survival outcome (Ti, ∆i), the new imputed time T ′

i is
given by

T ′
i = Ti + (1−∆i)MRL(Ti|Ŝ)

where Ŝ would be fit on the training data and could be an unconditional estimator, such as
Kaplan-Meier, or conditional, such as Akritas. The resulting survival times are interpreted
as the true times for those who died and the expected survival times for those who were
censored.

Buckley-James

Buckley-James (Buckley and James 1979) is another imputation method discussed earlier
(?@sec-surv-ml-models-boost). The Buckley-James method uses an iterative procedure
to impute censored survival times by the conditional expectation given censoring times and
covariates (Z. Wang and Wang 2010). Given the survival tuple for an outcome (Ti, ∆i), the
new imputed time T ′

i is

T ′
i =

{
Ti, ∆i = 1
Xiβ̂ + 1

ŜKM (ei)

∑
ei<ek

p̂KM (ek)ek ∆i = 0
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where ŜKM is the Kaplan-Meier estimator of the survival distribution estimated on training
data and with associated pmf p̂KM and ei = Ti −Xiβ̂ where β̂ are estimated coefficients of
a linear regression model fit on (Xi, Ti). Given the least squares approach, more parametric
assumptions are made than other imputation methods and it is more complex to separate
model fitting from imputation. Hence, this imputation may only be appropriate on a limited
number of data types.

Alternative Methods

Other methods have been proposed for ‘imputing’ censored survival times though with either
less clear discussion or to no benefit. Multiple imputation by chained equations (MICE)
has been demonstrated to perform well with covariate data and even outcome data (in a
non-survival setting). However no adaptations have been developed to incorporate censoring
times into the imputation and therefore is less informative than Gamma imputation.

Re-calibration of censored survival times (Vinzamuri, Li, and Reddy 2017) uses an iterative
update procedure to ‘re-calibrate’ censoring times however the motivation behind the method
is not sufficiently clear to be of interest in general survival modelling tasks outside of the
authors’ specific pipelines.

Finally parametric imputation is defined by making random draws from truncated probability
distributions and adding these to the censoring time (P. Royston 2001; Patrick Royston,
Parmar, and Altman 2008). Whilst this method is arguably the simplest method and will
lead to a sufficiently random sample, i.e. not one skewed by the imputation process, in
practice the randomness leads to unrealistic results, with some imputed times being very far
from the original censoring times and some being very close.

23.0.0.3 The Decision to Impute or Delete

Deletion methods are simple to implement and fast to compute however they can lead to
biasing the data or a significant sample reduction if used incorrectly. Imputation methods
can incorporate tuning and have more relaxed assumptions about the censoring mechanism,
though they may lead to over-confidence in the resulting outcome and therefore add bias into
the dataset. In some cases, the decision to impute or delete is straightforward, for example if
censoring is uninformative and only few observations are censored then complete deletion is
appropriate. If it is unknown if censoring is informative then this can crudely be estimated
by a benchmark experiment. Classification models can be fit on {(X1, ∆1), ..., (Xn, ∆n)}
where (Xi, ∆i) ∈ Dtrain. Whilst not an exact test, if any model significantly outperforms a
baseline, then this may indicate censoring is informative. This is demonstrated in (tab-car-
predcens?), in which a logistic regression outperforms a featureless baseline in correctly
predicting if an observation is censored when censoring is informative, but is no better than
the baseline when censoring is uninformative.

Table 23.1: Estimating censoring dependence by prediction. Sim1 is informative censoring
and Sim7 is uninformative. Logistic regression is compared to a featureless baseline with the
Brier score with standard errors. Censoring can be significantly predicted to 95% confidence
when informative (Sim1) but not when uninformative (Sim7).

Data Baseline Logistic Regression
Sim1 0.20 (0.14, 0.26) 0.02 (0.01, 0.03)
Sim7 0.19 (0.14, 0.24) 0.16 (0.13, 0.19)
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24.1 Common problems in survival analysis
24.1.1 Data cleaning
Events at t=0

Throughout this book we have defined survival times taking values in the non-negative
Reals (zero inclusive) R≥0. In practice, model implementations assume time is over the
positive Reals (zero exclusive). One must therefore consider how to deal with subjects that
experience the outcome at 0. There is no established best practice for dealing with this case
as the answer may be data-dependent. Possible choices include:

1. Deleting all data where the outcome occurs at t = 0, this may be appropriate if it
only happens in a small number of observations and therefore deletion is unlikely
to bias predictions;

2. Update the survival time to the next smallest observed survival time. For example,
if the first observation to experience the event after t = 0 happens at t = 0.1, then
set 0.1 as the survival time for any observation experiencing the event at t = 0.
Note this method will not be appropriate when data is over a long period, for
example if measuring time over years, then there could be a substantial difference
between t = 0 and t = 1;

3. Update the survival time to a very small value ϵ that makes sense given the
context of the data, e.g., ϵ = 0.0001.

Continuous v Discrete Time

We defined survival tasks throughout this book assuming continuous time predictions in
R≥0. In practice, many outcomes in survival analysis are recorded on a discrete scale, such
as in medical statistics where outcomes are observed on a yearly, daily, monthly, hourly, etc.
basis. Whilst discrete-time survival analysis exists for this purpose (Chapter 21), software
implementations overwhelming use theory from the ’continuous-time setting. There has
not been a lot of research into whether discrete-time methods outperform continuous-time
methods when correctly applied to discrete data, however available experiments do not
indicate that discrete methods outperform their continuous counterparts (Suresh, Severn,
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and Ghosh 2022). Therefore it is recommended to use available software implementations,
even when data is recorded on a discrete scale.

24.1.2 Evaluation and prediction
• Which time points to make predictions for?
•

24.2 What’s next for MLSA?
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